摘要:
A method of fabricating a rare earth oxide buffered III-N on silicon wafer including providing a crystalline silicon substrate, depositing a rare earth oxide structure on the silicon substrate including one or more layers of single crystal rare earth oxide, and depositing a layer of single crystal III-N material on the rare earth oxide structure so as to form an interface between the rare earth oxide structure and the layer of single crystal III-N material. The layer of single crystal III-N material produces a tensile stress at the interface and the rare earth oxide structure has a compressive stress at the interface dependent upon a thickness of the rare earth oxide structure. The rare earth oxide structure is grown with a thickness sufficient to provide a compressive stress offsetting at least a portion of the tensile stress at the interface to substantially reduce bowing in the wafer.
摘要:
A method of fabricating a rare earth oxide buffered III-N on silicon wafer including providing a crystalline silicon substrate, depositing a rare earth oxide structure on the silicon substrate including one or more layers of single crystal rare earth oxide, and depositing a layer of single crystal III-N material on the rare earth oxide structure so as to form an interface between the rare earth oxide structure and the layer of single crystal III-N material. The layer of single crystal III-N material produces a tensile stress at the interface and the rare earth oxide structure has a compressive stress at the interface dependent upon a thickness of the rare earth oxide structure. The rare earth oxide structure is grown with a thickness sufficient to provide a compressive stress offsetting at least a portion of the tensile stress at the interface to substantially reduce bowing in the wafer.
摘要:
A method of fabricating a layer of single crystal III-N material on a silicon substrate includes epitaxially growing a REO template on a silicon substrate. The template includes a REO layer adjacent the substrate with a crystal lattice spacing substantially matching the crystal lattice spacing of the substrate and selected to protect the substrate from nitridation. Either a rare earth oxynitride or a rare earth nitride is formed adjacent the upper surface of the template and a layer of single crystal III-N material is epitaxially grown thereon.
摘要:
A method of fabricating a rare earth oxide buffered III-N on silicon wafer including providing a crystalline silicon substrate, depositing a rare earth oxide structure on the silicon substrate including one or more layers of single crystal rare earth oxide, and depositing a layer of single crystal III-N material on the rare earth oxide structure so as to form an interface between the rare earth oxide structure and the layer of single crystal III-N material. The layer of single crystal III-N material produces a tensile stress at the interface and the rare earth oxide structure has a compressive stress at the interface dependent upon a thickness of the rare earth oxide structure. The rare earth oxide structure is grown with a thickness sufficient to provide a compressive stress offsetting at least a portion of the tensile stress at the interface to substantially reduce bowing in the wafer.
摘要:
A method of growing GaN material on a silicon substrate includes providing a single crystal silicon substrate with a (100) surface orientation or a (100) with up to a 10° offset surface orientation and using epi-twist technology, epitaxially growing a single crystal stress managing layer on the silicon substrate. The single crystal stress managing layer includes rare earth oxide with a (110) crystal orientation and a cubic crystal structure. The method further includes epitaxially growing a single crystal buffer layer on the stress managing layer. The single crystal buffer layer includes rare earth oxide with a lattice spacing closer to a lattice spacing of GaN than the rare earth oxide of the stress managing layer. Epitaxially growing a layer of single crystal GaN material on the surface of the buffer, the GaN material having one of a (11-20) crystal orientation and a (0001) crystal orientation.
摘要:
A III-N template formed on a silicon substrate includes a Distributed Bragg Reflector positioned on the silicon substrate. The Distributed Bragg Reflector is substantially crystal lattice matched to the surface of the silicon substrate. An aluminum oxide layer is positioned on the surface of the Distributed Bragg Reflector and substantially crystal lattice matched to the surface of the Distributed Bragg Reflector. A layer of aluminum nitride (AlN) is positioned on the surface of the aluminum oxide layer and substantially crystal lattice matched to the surface of the aluminum oxide layer. A III-N LED structure including at least one III-N layer can then be grown on the aluminum nitride layer and substantially crystal lattice matched to the surface of the aluminum nitride layer.
摘要:
A silicon-on-insulator (SOI) substrate structure and method of fabrication including a single crystal silicon substrate, a layer of single crystal rare earth oxide formed on the substrate, a layer of engineered single crystal silicon formed on the layer of single crystal rare earth oxide, and a single crystal insulator layer of IIIOxNy formed on the engineered single crystal silicon layer. In some embodiments the III material in the insulator layer includes more than on III material. In a preferred embodiment the single crystal rare earth oxide includes Gd2O3 and the single crystal insulator layer of IIIOxNy includes one of AlOxNy and AlGaOxNy.
摘要翻译:一种绝缘体上硅(SOI)衬底结构及其制造方法,包括单晶硅衬底,在衬底上形成的单晶稀土氧化物层,在单晶稀土层上形成的工程化单晶硅层 在工程化的单晶硅层上形成IIIOxNy的单晶绝缘体层。 在一些实施例中,绝缘体层中的III材料包括多于III族材料。 在优选的实施方案中,单晶稀土氧化物包括Gd 2 O 3,并且IIIO x N y的单晶绝缘体层包括AlO x N y和AlGaO x N y之一。
摘要:
III-N material grown on a silicon substrate includes a single crystal rare earth oxide layer positioned on a silicon substrate. The rare earth oxide is substantially crystal lattice matched to the surface of the silicon substrate. A first layer of III-N material is positioned on the surface of the rare earth oxide layer. An inter-layer of aluminum nitride (AlN) is positioned on the surface of the first layer of III-N material and an additional layer of III-N material is positioned on the surface of the inter-layer of aluminum nitride. The inter-layer of aluminum nitride and the additional layer of III-N material are repeated n-times to reduce or engineer strain in a final III-N layer. A cap layer of AlN is grown on the final III-N layer and a III-N layer of material with one of an LED structure and an HEMT structure is grown on the AlN cap layer.
摘要:
III-N material grown on a silicon substrate includes a single crystal buffer positioned on a silicon substrate. The buffer is substantially crystal lattice matched to the surface of the silicon substrate and includes aluminum oxynitride adjacent the substrate and aluminum nitride adjacent the upper surface. A first layer of III-N material is positioned on the upper surface of the buffer. An inter-layer of aluminum nitride (AlN) is positioned on the first III-N layer and an additional layer of III-N material is positioned on the inter-layer. The inter-layer of aluminum nitride and the additional layer of III-N material are repeated n-times to reduce or engineer strain in a final III-N layer.
摘要:
A DBR/gallium nitride/aluminum nitride base grown on a silicon substrate includes a Distributed Bragg Reflector (DBR) positioned on the silicon substrate. The DBR is substantially crystal lattice matched to the surface of the silicon substrate. A first layer of III-N material is positioned on the surface of the DBR, an inter-layer of aluminum nitride (AlN) is positioned on the surface of the first layer of III-N material and an additional layer of III-N material is positioned on the surface of the inter-layer of aluminum nitride. The inter-layer of aluminum nitride and the additional layer of III-N material are repeated n-times to reduce or engineer strain in a final III-N layer.