Abstract:
A machine for making a protective joint has a guide system, which is selectively clampable about a pipeline on opposite sides with respect to the annular junction portion and configured for defining an annular path about the annular junction portion; at least one heating unit moveable along the annular path and configured for heating the annular junction portion and moveable along the annular path; at least one spray unit moveable along the annular path and configured for applying at least one polymer material to the annular junction portion; and an extrusion die moveable along the annular path and configured for applying a protective foil about the annular junction portion.
Abstract:
A buoyancy device (1) comprises a support structure 2, which can be connected to an underwater application (3) and one or more buoyancy spheres (4) having a specific weight of less than 500 kg/m3 connected to the support structure (2) and having a light metal spherical shell (5) defining a spherical inner volume (6) and which has an outer diameter (d) greater than 0.5 cm, and a radial thickness (t) greater than 0.08 mm, wherein the spherical shell (5) is obtained in one piece in nano-crystalline metal with an average grain size of less than 1000 nanometers.
Abstract:
A heat-delivery apparatus (12) heats a heat-shrinkable sleeve (10) on a pipe (2). The heat-delivery apparatus (12) includes one or more heater elements (20) which define an interior heating surface that surrounds the sleeve (10). An air space is thus defined between the exterior of the sleeve (10) and the interior heating surface. The flow of air, that would otherwise be generated by the step of applying heat, within said air space is controlled or restricted for example by means of fins (50, 50s, 60) that control or restrict the airflow, fully or partially sealing the air space with one or more sealing members (70), or fans (80) that generate an opposing airflow (82).
Abstract:
A method of applying protective sheeting of polymer material to a pipeline, such as on a J-lay rig, includes the steps of driving a carriage along an annular path about the pipeline; extruding and simultaneously winding the protective sheeting about the pipeline via an end extrusion die fitted to the carriage; compressing the protective sheeting on the pipeline, directly downstream from the end extrusion die, so the protective sheeting adheres to the pipeline; and controlling the drive, extrusion, and compression steps so that the time lapse between expulsion of a cross section of protective sheeting from the end extrusion die and compression of the same cross section of protective sheeting is less than one second.
Abstract:
A machine for making a protective joint has a guide system, which is selectively clampable about a pipeline on opposite sides with respect to the annular junction portion and configured for defining an annular path about the annular junction portion; at least one heating unit moveable along the annular path and configured for heating the annular junction portion and moveable along the annular path; at least one spray unit moveable along the annular path and configured for applying at least one polymer material to the annular junction portion; and an extrusion die moveable along the annular path and configured for applying a protective foil about the annular junction portion.
Abstract:
A method of applying protective sheeting of polymer material to a pipeline, such as on a J-lay rig, includes the steps of driving a carriage along an annular path about the pipeline; extruding and simultaneously winding the protective sheeting about the pipeline via an end extrusion die fitted to the carriage; compressing the protective sheeting on the pipeline, directly downstream from the end extrusion die, so the protective sheeting adheres to the pipeline; and controlling the drive, extrusion, and compression steps so that the time lapse between expulsion of a cross section of protective sheeting from the end extrusion die and compression of the same cross section of protective sheeting is less than one second.
Abstract:
A heat-delivery apparatus (12) heats a heat-shrinkable sleeve (10) on a pipe (2). The heat-delivery apparatus (12) includes one or more heater elements (20) which define an interior heating surface that surrounds the sleeve (10). An air space is thus defined between the exterior of the sleeve (10) and the interior heating surface. The flow of air, that would otherwise be generated by the step of applying heat, within said air space is controlled or restricted for example by means of fins (50, 50s, 60) that control or restrict the airflow, fully or partially sealing the air space with one or more sealing members (70), or fans (80) that generate an opposing airflow (82).
Abstract:
A roller for compressing protective sheeting of polymer material around a pipeline rotates about a given or designated axis of rotation and has a shaft; and a first tubular portion which extends about the shaft and varies in elasticity along the given or designated axis of rotation; more specifically, the first tubular portion is of greater elasticity at the ends of the roller than at the center of the roller.
Abstract:
A roller for compressing protective sheeting of polymer material around a pipeline rotates about a given or designated axis of rotation and has a shaft; and a first tubular portion which extends about the shaft and varies in elasticity along the given or designated axis of rotation; more specifically, the first tubular portion is of greater elasticity at the ends of the roller than at the center of the roller.