Abstract:
A method of measuring biological sample properties and a biological sample property measuring apparatus is provided. A method of measuring biological sample properties includes disposing a biomaterial to contact a sensing unit, detecting a radio frequency (RF) signal flowing through the sensing unit, and obtaining an RF property indicator of the biomaterial based on the detected RF signal.
Abstract:
A nano scale resonator, a nano scale sensor, and a fabrication method thereof are provided. The nano scale resonator includes a resonance unit of nano scale configured to resonate based on an applied signal, and an anchor on a substrate, the anchor being configured to support the resonance unit, the anchor having an air gap within boundaries of the anchor, the resonance unit, and the substrate, the air gap being configured to reflect a vertical wave occurring in the resonance unit.
Abstract:
A filter and a transceiver in a radio frequency (RF) band, using a bulk acoustic wave resonator (BAWR), are provided. The RF filter includes at least one low temperature coefficient of frequency (TCF) BAWR. The RF filter further includes at least one high quality factor (Q) BAWR including a high Q compared to the at least one low TCF BAWR, the at least one low TCF BAWR including a low TCF compared to the at least one high Q BAWR.
Abstract:
Disclosed is a bulk acoustic wave resonator (BAWR). The BAWR includes a bulk acoustic wave resonance unit with a first electrode, a second electrode, and a piezoelectric layer. The piezoelectric layer is disposed between the first electrode and the second electrode. An air edge is formed at a distance from a center of the bulk acoustic wave resonance unit.
Abstract:
Provided is a bulk acoustic wave resonator (BAWR). The BAWR may include an air cavity disposed on a substrate, a bulk acoustic wave resonant unit including a piezoelectric layer, and a reflective layer to reflect a wave of a resonant frequency that is generated from the piezoelectric layer.
Abstract:
A nano resonance apparatus includes a gate electrode configured to generate a magnetic field, and a nanowire connecting a source electrode to a drain electrode and configured to vibrate in the presence of the magnetic field. The nanowire includes a protruding portion extending in a direction of the gate electrode.
Abstract:
Provided are a resonator and a method of fabricating the same. The resonator may include a first electrode disposed on a substrate, a piezoelectric layer disposed on the first electrode, a second electrode disposed on the piezoelectric layer, and a control layer disposed on the second electrode and having a frame with an uneven surface.
Abstract:
A nano resonator includes a substrate, a first insulating layer disposed on the substrate, a first source disposed on the first insulating layer at a first position, a first drain disposed on the first insulating layer at a second position spaced apart from the first position so that the first drain faces the first source, a first nano-wire channel having a first end connected to the first source and a second end connected to the first drain, and having a doping type and a doping concentration that are identical to a doping type and a doping concentration of the first source and the first drain, and a second nano-wire channel disposed at a predetermined distance from the first nano-wire channel in a direction perpendicular to the substrate or a direction parallel to the substrate.
Abstract:
Provided are a matching segment circuit, to which a radio frequency (RF) is applied, and an RF integrated device using the matching segment circuit. The matching segment circuit to which an RF is applied may include an input end connected to a first RF device, a parallel segment having a first capacitor and a first inductor connected in parallel, a second inductor connected to the parallel segment in series, and an output end connected to a second RF device. The first capacitor, the first inductor, and the second inductor may be configured so that an impedance of the first RF device and an impedance of the second RF device may match.
Abstract:
A sensing apparatus using a radio frequency and a manufacturing method thereof is provided. A sensing apparatus using a radio frequency includes a protecting layer configured to protect a substrate from migration of electrons occurring as the radio frequency is applied to a first electrode and a second electrode, a channel forming layer configured to form a channel based on a field between the first electrode and the second electrode, the channel forming layer using a polarized carbon-based nano material to form the channel, and a sensing layer configured to sense glucose using a medium material that is attached on the carbon-based nano material.