Abstract:
A healthcare apparatus according to an embodiment includes: a plurality of light sources configured to emit light of different wavelengths onto an object; a light detector configured to measure an optical signal of each of the wavelengths by receiving light reflected or scattered from the object; and a processor configured to obtain a blood glucose level and a blood flow index by using the optical signal of each of the wavelengths, and to estimate at least one from among dietary information and dietary metabolism state information by monitoring a blood glucose level change and a blood flow index change after ingestion of a food.
Abstract:
Provided are battery management apparatuses and methods. The battery management apparatus includes a sensitivity determiner configured to determine sensitivity of a battery state based on sensed battery information and previous battery state information, and an execution parameter adjuster configured to adjust a parameter for estimating the battery state based on the determined sensitivity of the battery state.
Abstract:
A device for detecting an interference signal includes an estimator configured to estimate a mean value of received signals output from an analog-digital converter (ADC), a filter configured to filter a low frequency band of the received signals using the estimated mean value to produce filtered received signals, a detector configured to detect, from the filtered received signals, interference signals using a coherent modulation scheme and a non-coherent modulation scheme, and a combiner configured to determine whether interference exists in a frequency channel in response to a result of the interference signal detecting using the coherent modulation scheme and the non-coherent modulation scheme, based on a preset condition.
Abstract:
An optical sensor includes light sources configured to emit light, a substrate on which the light sources are mounted, the substrate comprising holes in regions on which the light sources are mounted, and a first photodetector configured to receive a first light emitted from a front surface of each of the light sources, the first light being reflected or scattered from an object. The optical sensor further includes at least one second photodetector configured to receive a second light emitted from a rear surface of each of the light sources, the second light passing through the holes corresponding to the light sources.
Abstract:
Provided are a hub, a relay node, and a node for reconfiguring an active time position of a node in a WBAN. An active time position of the node may be reconfigured based on information associated with an active time position of a candidate relay node that the node desires to use as a relay node.
Abstract:
A communication method of a coordinator in a bidirectional event transmission sensor network comprising a sensor node and the coordinator is provided. The method includes sensing, in an uplink section, whether a signal having energy greater than or equal to a predetermined magnitude is received, the signal indicating occurrence of an uplink event detected by the sensor node, and transmitting, to the sensor node in a downlink section, a synchronization packet that is used for receiving the uplink event or for transmitting a downlink event in response to the coordinator detecting the downlink event or sensing the signal having energy greater than or equal to the predetermined magnitude in the uplink section. The bidirectional event transmission sensor network has a structure of a super frame that includes at least one standby slot (SS) including the uplink section and the downlink section.
Abstract:
An interactive method includes displaying image content received through a television (TV) network, identifying an object of interest of a user among a plurality of regions or a plurality of objects included in the image content, and providing additional information corresponding to the object of interest.
Abstract:
A communication method of a transmission node includes generating information of a transmission unavailable time period of the transmission node in a reception available time period of a reception node, and transmitting, to the reception node, the information of the transmission unavailable time period. The reception node operates in a sleep state based on the information of the transmission unavailable time period.
Abstract:
A device communicating with a node, includes a communication unit configured to transmit a transmitting data segment to the node, and receive a receiving data segment from the node. The device further includes a phase locked loop (PLL) configured to generate an operating frequency for the communication unit. The device further includes a PLL controller configured to control a hold time and a lock time, of the PLL, that are shared between the node and the device. The device further includes a scheduler configured to schedule the transmitting data segment and the receiving data segment based on the controlled hold time and lock time.
Abstract:
Provided is a spectrometer. The spectrometer includes: a light source part configured to emit light of a plurality of wavelengths onto an object; a detector configured to detect an optical signal of each of the plurality of wavelengths as reflected from the object; a controller configured to set an amplification gain for each of the plurality of wavelengths according to photoreaction properties of the object; and an amplifier configured to amplify an output signal of the detector by using the set amplification gain.