Abstract:
A semiconductor device may include a device isolation region configured to define an active region in a substrate, an active gate structure disposed in the active region, and a field gate structure disposed in the device isolation region. The field gate structure may include a gate conductive layer. The active gate structure may include an upper active gate structure including a gate conductive layer and a lower active gate structure formed under the upper active gate structure and vertically spaced apart from the upper active gate structure. The lower active gate structure may include a gate conductive layer. A top surface of the gate conductive layer of the field gate structure is located at a lower level than a bottom surface of the gate conductive layer of the upper active gate structure.
Abstract:
A semiconductor memory device includes a substrate having an active region, word lines extending across the active region, a bit line on the active region between the word lines, a bit line node contact between the bit line and the active region, and a storage node contact on an end portion of the active region, wherein one or more of the bit line node contact or the storage node contact include silicon germanium.
Abstract:
A semiconductor device includes a first conductive line and a second conductive line spaced apart from the first conductive line. A semiconductor pattern is disposed between the first conductive line and the second conductive line. The semiconductor pattern includes a first semiconductor pattern having first-conductivity-type impurities disposed adjacent to the first conductive line. A second semiconductor pattern having second-conductivity-type impurities is disposed adjacent to the second conductive line. A third semiconductor pattern is disposed between the first semiconductor pattern and the second semiconductor pattern. The third semiconductor pattern includes a first region disposed adjacent to the first semiconductor pattern and a second region disposed between the first region and the second semiconductor pattern. At least one of the first region and the second region comprises an intrinsic semiconductor layer. A first gate line crosses the first region and a second gate line crosses the second region.
Abstract:
A semiconductor device includes a stack structure on a substrate, the stack structure including alternating gate electrodes and insulating layers stacked along a first direction, a vertical opening through the stack structure along the first direction, the vertical opening including a channel structure having a semiconductor layer on an inner sidewall of the vertical opening, and a variable resistive material on the semiconductor layer, a vacancy concentration in the variable resistive material varies along its width to have a higher concentration closer to a center of the channel structure than to the semiconductor layer, and an impurity region on the substrate, the semiconductor layer contacting the impurity region at a bottom of the channel structure.
Abstract:
A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes a substrate including a trench. The semiconductor device further includes a gate electrode disposed in the trench, and a gate insulating film disposed between the substrate and the gate electrode. The gate electrode includes a gate conductor and a metal element, and an effective work function of the gate electrode is less than an effective work function of the gate conductor.
Abstract:
A semiconductor memory device may include a first electrode and a second electrode, which are spaced apart from each other in a first direction, and a first semiconductor pattern, which is in contact with both of the first and second electrodes. The first semiconductor pattern may include first to fourth sub-semiconductor patterns, which are sequentially disposed in the first direction. The first and fourth sub-semiconductor patterns may be in contact with the first and second electrodes, respectively. The first and third sub-semiconductor patterns may be of a first conductivity type, and the second and fourth sub-semiconductor patterns may be of a second conductivity type different from the first conductivity type. Each of the first to fourth sub-semiconductor patterns may include a transition metal and a chalcogen element.
Abstract:
A semiconductor device is provided. The semiconductor device includes a first stacked structure including a plurality of first insulating patterns and a plurality of first semiconductor patterns alternately stacked on a substrate, the first stacked structure extending in a first direction parallel to an upper surface of the substrate, a first conductive pattern on one side surface of the first stacked structure, the first conductive pattern extending in a second direction crossing the upper surface of the substrate, and a first ferroelectric layer between the first stacked structure and the first conductive pattern, the first ferroelectric layer extending in the second direction, wherein each of the first semiconductor patterns includes a first impurity region, a first channel region and a second impurity region which are sequentially arranged along the first direction.
Abstract:
A semiconductor device including a semiconductor substrate including a trench, the semiconductor substrate having a crystal structure; and an insulating layer covering an inner sidewall of the trench, wherein the inner sidewall of the trench has at least one plane included in a {320} family of planes of the crystal structure or at least one plane similar to the {320} family of planes.
Abstract:
A semiconductor device may include a plurality of dummy wirings formed on a substrate at different vertical levels and electrically floated and a plurality of dummy contact plugs each electrically connected between two adjacent dummy wirings of the plurality of dummy wiring of the plurality of dummy wirings. No dummy wiring of the plurality of dummy wirings is electrically connected to a terminal of any one of a plurality of transistors included in the substrate.
Abstract:
A semiconductor device may include a device isolation region configured to define an active region in a substrate, an active gate structure disposed in the active region, and a field gate structure disposed in the device isolation region. The field gate structure may include a gate conductive layer. The active gate structure may include an upper active gate structure including a gate conductive layer and a lower active gate structure formed under the upper active gate structure and vertically spaced apart from the upper active gate structure. The lower active gate structure may include a gate conductive layer. A top surface of the gate conductive layer of the field gate structure is located at a lower level than a bottom surface of the gate conductive layer of the upper active gate structure.