摘要:
Disclosed is a halogen-free resin composition. The halogen-free resin composition comprises: (A) 10-60 parts by weight of dicyclopentadiene benzoxazine resin, (B) an epoxy resin, (C) an active ester curing agent, and (D) a phosphorus-containing flame retardant, based on 100 parts by weight of the total amount of total organic solid matters of (A), (B), (C), and (D). A prepreg and a laminate which are prepared using the halogen-free resin composition have low dielectric constant, low dielectric loss factor, low water absorption, high dimensional stability, high thermal resistance and good flame retardancy, processability and chemical resistance.
摘要:
Disclosed are a halogen-free resin composition, and a prepreg and a laminate prepared by using the same. The halogen-free resin composition comprises the following components according to organic solid matters by weight parts: (A) 40-80 parts by weight of allyl modified benzoxazine resin; (B) 10-20 parts by weight of hydrocarbon resin; (C) 10-40 parts by weight of allyl modified polyphenylene oxide resin; (D) 0.01-3 parts by weight of initiating agent; (E) 10-100 parts by weight of filler; and (F) 0-80 parts by weight of phosphoric flame retardant. The prepreg and the laminate prepared by using the halogen-free resin composition have lower dielectric constant and lower dielectric loss tangent value, higher peeling strength, higher glass transition temperature, excellent heat resistance and good flame retardant effect.
摘要:
The present invention provides a siloxane-modified cyclotriphosphazene halogen-free flame retardant, and a preparation method and a use thereof. The siloxane-modified cyclotriphosphazene halogen-free flame retardant has the structural formula as shown in Formula I. In the siloxane-modified cyclotriphosphazene halogen-free flame retardant of the present invention, three kinds of structures of siloxane, aryl phosphorus oxygen compound and cyclotriphosphazene are built in one molecular formula, which combines the advantages of three structures, improves the compatibility between the flame retardant and resins, has a high flame retardant efficiency and a better char formation and can greatly increase the flame retardancy and stability of resin cured products.
摘要:
The present invention discloses a phenoxycyclotriphosphazene active ester, a halogen-free resin composition and uses thereof. The phenoxycyclotriphosphazene active ester comprises at least 65 mol. % of a substance having the following structural formula. The halogen-free resin composition comprises 5-50 parts by weight of a phenoxycyclotriphosphazene active ester, 15-85 parts by weight of a thermosetting resin, 1-35 parts by weight of a curing agent, 0-5 parts by weight of a curing accelerator and 0-100 parts by weight of an inorganic filler. The present invention discloses introducing phenoxycyclotriphosphazene active ester into a thermosetting resin, reacting active esters with thermosetting resins, such as epoxy resin, without producing hydroxy groups, which not only satisfies the requirements on being halogen-free and flame retardancy, but also improves the electrical properties (decreasing and stabilizing Dk and Df) of the system, so as to make non-halogenation of high frequency and high speed substrate materials possible.
摘要:
The present invention relates to a halogen-free flame retardant resin composition, according to parts by weight, the resin composition comprises: (A) a mixture of phenoxyphosphazene compound (A1) and compound (A2) having a dihydrobenzoxazine ring, the mixture comprising 45-90 parts by weight, and the weight ratio of the phenoxyphosphazene compound (A1) and the compound (A2) having a dihydrobenzoxazine ring is between 1:25-1:2; (B) an epoxy resin with epoxy equivalent of 500-2000, the epoxy resin comprising 10-45 parts by weight; (C) a phenolic resin comprising 10-25 parts by weight; and (D) an amine curing agent comprising 0.5-10 parts by weight. The prepreg, laminate, and metal-clad laminate for the printed circuit prepared using the halogen-free flame retardant resin composition, have the advantages of high glass transition temperature (Tg), high thermal resistance, low dielectric dissipation factor, low water absorption as well as a low C.T.E.