Abstract:
An electronics composition includes a curable matrix material and, optionally, a filler material disposed within the matrix material. The cured matrix material includes an oligomer or polymer material derived from a compound selected from a methylene malonate monomer, a multifunctional methylene monomer, a methylene beta ketoester monomer, a methylene beta diketone monomer, or a mixture thereof.
Abstract:
An electronics composition includes a curable matrix material and, optionally, a filler material disposed within the matrix material. The cured matrix material includes an oligomer or polymer material derived from a compound selected from a methylene malonate monomer, a multifunctional methylene monomer, a methylene beta ketoester monomer, a methylene beta diketone monomer, or a mixture thereof.
Abstract:
Optical materials including polymerizable compositions and oligomeric and polymeric material formed therefrom. The oligomer or polymer material include structural repeat units. The optical material has low or substantially no absorbance of wavelengths in at least one of the spectral regions of interest. Optical components include adhesives, waveguides, spherical or non-spherical optical lenses, architectural articles, automotive components, laminated structures and composites.
Abstract:
Method to obtain methylene malonate and related monomers following a bis(hydroxymethyl) malonate pathway. A bis(hydroxymethyl) malonate intermediary is subsequently reacted (i.e., subjected to thermolysis) to provide a methylene malonate monomer species. A source of formaldehyde (e.g., formalin) is provided in the presence of a basic catalyst (e.g., calcium hydroxide), to which a malonate (e.g., diethyl malonate) is added under suitable reaction conditions to obtain the desired intermediary (e.g., dialkyl bis(hydroxymethyl) malonate). The intermediary is reacted (i.e., subjected to thermolysis) under suitable conditions in the presence of a suitable catalyst (e.g., a zeolite) to obtain a methylene malonate monomer. In an exemplary embodiment, the thermolysis reaction includes the addition of the bis(hydroxymethyl) malonate intermediary onto a heated catalyst. The reaction product is collected and purified. The disclosed methods may be performed in a continuous operation. Discrete steps may be performed by using modular units within a plant.
Abstract:
Method to obtain methylene malonate and related monomers following a bis(hydroxymethyl) malonate pathway. A bis(hydroxymethyl) malonate intermediary is subsequently reacted (i.e., subjected to thermolysis) to provide a methylene malonate monomer species. A source of formaldehyde (e.g., formalin) is provided in the presence of a basic catalyst (e.g., calcium hydroxide), to which a malonate (e.g., diethyl malonate) is added under suitable reaction conditions to obtain the desired intermediary (e.g., dialkyl bis(hydroxymethyl) malonate). The intermediary is reacted (i.e., subjected to thermolysis) under suitable conditions in the presence of a suitable catalyst (e.g., a zeolite) to obtain a methylene malonate monomer. In an exemplary embodiment, the thermolysis reaction includes the addition of the bis(hydroxymethyl) malonate intermediary onto a heated catalyst. The reaction product is collected and purified. The disclosed methods may be performed in a continuous operation. Discrete steps may be performed by using modular units within a plant.
Abstract:
Method to obtain methylene malonate and related monomers following a bis(hydroxymethyl) malonate pathway. A bis(hydroxymethyl) malonate intermediary is subsequently reacted (i.e., subjected to thermolysis) to provide a methylene malonate monomer species. A source of formaldehyde (e.g., formalin) is provided in the presence of a basic catalyst (e.g., calcium hydroxide), to which a malonate (e.g., diethyl malonate) is added under suitable reaction conditions to obtain the desired intermediary (e.g., dialkyl bis(hydroxymethyl) malonate). The intermediary is reacted (i.e., subjected to thermolysis) under suitable conditions in the presence of a suitable catalyst (e.g., a zeolite) to obtain a methylene malonate monomer. In an exemplary embodiment, the thermolysis reaction includes the addition of the bis(hydroxymethyl) malonate intermediary onto a heated catalyst. The reaction product is collected and purified. The disclosed methods may be performed in a continuous operation. Discrete steps may be performed by using modular units within a plant.
Abstract:
Reactive composition includes a reactive component able to form an adhesive bond between two substrates, at least one of which comprises a plastic material. The substrate may include an initiator on or near the surface thereof. The initiator may be present in the plastic material inherently, by blending in an additive package, through injection molding, or other process. The reactive component may comprise a methylene malonate, a reactive multifunctional methylene, a methylene beta ketoester, a methylene beta diketone. A carrier component for the reactive component may be selected to interact with the plastic substrate to soften and/or penetrate the surface to be bonded. The surface of the plastic may be abraded or otherwise treated to expose the initiator. The reactive component, upon contact with a suitable initiator, is able to polymerize to form an interpenetrating polymer weld.
Abstract:
Method to obtain methylene malonate and related monomers following a bis(hydroxymethyl) malonate pathway. A bis(hydroxymethyl) malonate intermediary is subsequently reacted (i.e., subjected to thermolysis) to provide a methylene malonate monomer species. A source of formaldehyde (e.g., formalin) is provided in the presence of a basic catalyst (e.g., calcium hydroxide), to which a malonate (e.g., diethyl malonate) is added under suitable reaction conditions to obtain the desired intermediary (e.g., dialkyl bis(hydroxymethyl) malonate). The intermediary is reacted (i.e., subjected to thermolysis) under suitable conditions in the presence of a suitable catalyst (e.g., a zeolite) to obtain a methylene malonate monomer. In an exemplary embodiment, the thermolysis reaction includes the addition of the bis(hydroxymethyl) malonate intermediary onto a heated catalyst. The reaction product is collected and purified. The disclosed methods may be performed in a continuous operation. Discrete steps may be performed by using modular units within a plant.
Abstract:
Method to obtain methylene malonate and related monomers following a bis(hydroxymethyl) malonate pathway. A bis(hydroxymethyl) malonate intermediary is subsequently reacted (i.e., subjected to thermolysis) to provide a methylene malonate monomer species. A source of formaldehyde (e.g., formalin) is provided in the presence of a basic catalyst (e.g., calcium hydroxide), to which a malonate (e.g., diethyl malonate) is added under suitable reaction conditions to obtain the desired intermediary (e.g., dialkyl bis(hydroxymethyl) malonate). The intermediary is reacted (i.e., subjected to thermolysis) under suitable conditions in the presence of a suitable catalyst (e.g., a zeolite) to obtain a methylene malonate monomer. In an exemplary embodiment, the thermolysis reaction includes the addition of the bis(hydroxymethyl) malonate intermediary onto a heated catalyst. The reaction product is collected and purified. The disclosed methods may be performed in a continuous operation. Discrete steps may be performed by using modular units within a plant.
Abstract:
Reactive composition includes a reactive component able to form an adhesive bond between two substrates, at least one of which comprises a plastic material. The substrate may include an initiator on or near the surface thereof. The initiator may be present in the plastic material inherently, by blending in an additive package, through injection molding, or other process. The reactive component may comprise a methylene malonate, a reactive multifunctional methylene, a methylene beta ketoester, a methylene beta diketone. A carrier component for the reactive component may be selected to interact with the plastic substrate to soften and/or penetrate the surface to be bonded. The surface of the plastic may be abraded or otherwise treated to expose the initiator. The reactive component, upon contact with a suitable initiator, is able to polymerize to form an interpenetrating polymer weld.