Abstract:
A memory system includes a memory device including a plurality of memory cells, and a memory controller suitable for generating a second address based on a first address indicating a defective memory cell, among the plurality of memory cells, and sequentially transmitting the first address and a first command corresponding to the first address, and the second address and a second command corresponding to the second address to the memory device, during write and read operations of the defective memory cell.
Abstract:
A semiconductor memory device includes: a first memory cell coupled to a first bit line; a second memory cell coupled to a second bit line; and a sense amplification circuit for sensing and amplifying a voltage difference between the first and second bit lines, wherein the sense amplification circuit includes: a first sense amplifier including a cross-coupled pair of first and second transistors coupled to the first bit line and the second bit line, respectively; a second sense amplifier including a cross-coupled pair of third and fourth transistors coupled to the first and second bit lines, respectively; and an offset supplier for controlling a timing for supplying a voltage of the first bit line to the first transistor and a timing for supplying a voltage of the second bit line to the second transistor according to a selected memory from the first and second memory cells.
Abstract:
A majority decision circuit includes: a majority decision unit configured to compare first data with second data to decide whether one of the first data and the second data has more bits with a first logical value; and an offset application unit configured to control the majority decision unit so that the majority decision unit decides, in a case when the number of bits with the first logical value among the first data is equal to the number of bits with the first logical value among the second data, that the first data have more bits with the first logical value if offset is a first setting value in a first phase and decides that the second data have more bits with the first logical value if the offset is a second setting value in a second phase.
Abstract:
A duty cycle correction circuit includes a clock adjustment unit configured to adjust a duty ratio of an input clock signal in response to a duty control signal and generate an output clock signal, a tracking type setting unit configured to generate an tracking type selection signal for setting a first or second tracking type based on a duty locking state of the output clock signal, and a control signal generation unit configured to generate the duty control signal, into which the first or second tracking type is incorporated, in response to the tracking type selection signal and the output clock signal.
Abstract:
A memory device may include: a plurality of memory cells; a weak cell information storage unit suitable for storing a weak address and parity information corresponding to one or more weak cells having a shorter data retention time than a reference time, among the plurality of memory cells; an ECC (Error Correction Code) circuit suitable for detecting and correcting an error bit of the one or more weak cells using the parity information; and a refresh control unit suitable for controlling the plurality of memory cells to be refreshed at a cycle equal to or more than the reference time.
Abstract:
A clock generation circuit includes a clock generation unit suitable for generating a first clock, a first inversion clock having an opposite phase to the first clock, a second clock having a different phase from the first clock, and a second inversion clock having an opposite phase to the second clock; and a reset control unit suitable for comparing the phases of the first and second clocks, and controlling the clock generation unit to disable for a time and then enable the second clock and the second inversion clock when the second clock leads the first clock.
Abstract:
A latch circuit includes a first PMOS transistor suitable for pull-up driving a second node based on a voltage of a first node, a first NMOS transistor suitable for pull-down driving the second node based on a voltage of the first node, a second PMOS transistor suitable for pull-up driving the first node based on a voltage of the second node, a second NMOS transistor suitable for pull-down driving the first node based on a voltage of the second node, a first separation element suitable for electrically separating the first NMOS transistor from the second node when the first PMOS transistor is turned on, and a second separation element suitable for electrically separating the second NMOS transistor from the first node when the second PMOS transistor is turned on.
Abstract:
A semiconductor device includes a periodic signal generating circuit for generating a periodic signal having a set period regardless of changes in temperature in response to a first trimming signal as a default value and controlling the set period of the periodic signal based on the temperature in response to a second trimming signal, and an internal circuit to perform a set operation in response to the periodic signal.
Abstract:
A duty cycle correction circuit includes a clock adjustment unit configured to adjust a duty ratio of an input clock signal in response to a duty control signal and generate an output clock signal, a tracking type setting unit configured to generate an tracking type selection signal for setting a first or second tracking type based on a duty locking state of the output clock signal, and a control signal generation unit configured to generate the duty control signal, into which the first or second tracking type is incorporated, in response to the tracking type selection signal and the output clock signal.
Abstract:
A phase-locked loop includes a phase detection unit configured to compare the phase of a feedback clock with the phase of an input clock, a clock generation unit configured to adjust the frequency of a first clock based on a result of the comparison of the phase detection unit, a first division unit configured to generate an output clock by dividing the first clock at a first division ratio in test mode and generate the output clock by dividing the first clock at a second division ratio that is lower than the first division ratio in normal mode, and a second division unit configured to generate the feedback clock by dividing the output clock.