Abstract:
A memory module includes an emergency power supplier, a plurality of ranks each including one or more volatile memories a non-volatile memory, and a controller suitable for backing up data of the ranks into the non-volatile memory by using the emergency power supplier during a power failure, wherein the ranks are sequentially backed up, and while one rank is backed up among the ranks, the other ranks are controlled in a self-refresh mode.
Abstract:
A test setting circuit includes a first detection unit suitable for detecting whether a first code is sequentially inputted based on a first sequence, at each of first to Nth steps, where N is a natural number; a second detection unit suitable for sequentially receiving a second code through the first to Nth steps, and detecting whether the second code that is sequentially inputted through the first to Nth steps has a value corresponding to a second sequence; and a test setting unit suitable for setting a test mode when it is detected that the first code and the second code are inputted to satisfy the first sequence and the second sequence.
Abstract:
A semiconductor device may include a first pad suitable for inputting a dock, a plurality of second pads suitable for inputting data through a plurality of first data paths, a third pad suitable for inputting a first strobe signal through a first strobe signal path, a data latch unit suitable for latching the data inputted through the first data paths in response to the first strobe signal inputted through the first strobe signal path, and a calibration control unit suitable for calibrating delay values of the plurality of first data paths and the first strobe signal path in a first calibration mode such that a plurality of first test signals passing through the respective first data paths and a second test signal passing through the first strobe path are in phase with the clock inputted from the first pad.
Abstract:
A memory module includes an emergency power supplier, a plurality of ranks each including one or more volatile memories, a non-volatile memory, and a controller suitable for backing up data of the ranks into the non-volatile memory by using the emergency power supplier during a power failure, wherein the ranks are sequentially backed up, and while one rank is backed up among the ranks, the other ranks are controlled in a self-refresh mode.
Abstract:
A memory device includes a decoder circuit configured to activate a setting signal and a write signal if a setting command is applied when a reference mode is set; a delay circuit configured to delay and to generate a delayed write signal; and a setting circuit configured to perform a setting operation in response to the delayed write signal and an input signal of a predetermined pad at the time of setting of the reference mode and to perform the setting operation in response to the setting signal when the reference mode is not set.
Abstract:
A integrated circuit includes a clock control signal generation circuit configured to generate a clock control signal using transition of a control signal, a clock control unit configured to activate a control clock in an activated period of the clock control signal, and to deactivate the control clock in a deactivated period of the clock control signal, and a control circuit configured to operate in response to the control signal and in synchronization with the control clock.
Abstract:
A semiconductor device includes: a command decoding unit suitable for decoding external command signals to generate an internal command signal; and a pulse control unit suitable for controlling a pulse width of the internal command signal.
Abstract:
A memory module includes an emergency power supply block, a volatile memory, a nonvolatile memory, and a control block configured to control data of the volatile memory to be backed up in the nonvolatile memory, by using a power supplied from the emergency power supply block, upon a power failure, and control the data of the volatile memory to be recovered, by using data backed up in the nonvolatile memory, upon a power recovery, wherein the control block controls the data of the volatile memory not to be backed up while controlling the data of the volatile memory to be recovered, even upon the power failure.
Abstract:
A memory may include a plurality of word lines to which one or more memory cells are connected, and a control unit suitable for activating and precharging a first word line that is selected based on an address of a high-activated word line during a target refresh operation while sequentially activating and precharging the plurality of word lines in a refresh operation, wherein the control unit is suitable for writing a test data to one or more first memory cells connected to the first word line during the target refresh operation in a test mode, wherein the high-activated word line is a word line activated over a reference number or a reference frequency, among the plurality of word lines.
Abstract:
A semiconductor device includes first and second bank groups coupled to first and second data lines which are electrically isolated from each other. The semiconductor device includes a register unit suitable for providing predetermined data to the second data line in a specific mode, a data transfer and output unit suitable for externally outputting the predetermined data loaded onto the second data line and simultaneously transferring the predetermined data to the first data line in the specific mode, and a data output unit suitable for externally outputting the predetermined data loaded onto the first data line in the specific mode.