Abstract:
A semiconductor package includes a substrate; a driving chip having first bumps on a first surface and bump pads on a second surface facing away from the first surface, and mounted to the substrate by the medium of the first bumps; a support member disposed on the substrate substantially horizontally with respect to the driving chip; and a plurality of memory chips substantially horizontally disposed on the driving chip and the support member such that one corner portions of the memory chips are positioned on the driving chip while being centered about the driving chip, wherein the respective memory chips have second bumps which are electrically connected with the respective bump pads of the driving chip, on one surfaces of the one corner portions of the memory chips which face the driving chip.
Abstract:
A semiconductor system includes a memory configured to output a parity bit during a read operation and receive a data mask (DM) signal during a write operation. The semiconductor system also includes a System On Chip (SOC) configured to detect errors by decoding the parity bit during the read operation, and output the DM signal to the memory during the write operation. Since the parity bit is generated in the memory based on data received from outside the memory, the semiconductor device and a corresponding semiconductor system may reduce the size of a storage space for parity bits.
Abstract:
A semiconductor memory device includes a plurality of first regions formed in a line-type and extending in a first direction, and a plurality of second regions and a plurality of third regions arranged between adjacent first regions in a zigzag manner.
Abstract:
A semiconductor package includes a first substrate, a plurality of memory chips horizontally disposed on the first substrate, and having one surfaces which face the first substrate, other surfaces which face away from the one surfaces, and first bumps formed on the other surfaces, a second substrate disposed on the plurality of memory chips and electrically connected, a sub-substrate horizontally disposed on the first substrate together with the plurality of memory chips and electrically connecting the first substrate and the second substrate, and a driving chip having second bumps on one surface thereof and mounted to the second substrate such that the second bumps are electrically connected with the second substrate.
Abstract:
A semiconductor chip module includes a first semiconductor chip having first through-electrodes, a second semiconductor chip having second through-electrodes which are electrically connected with the first through-electrodes, first and second test pads, a first connection line which connects the first test pad with one second through-electrode, a second connection line which connects the second test pad with another second through-electrode, third connection lines which connect the remaining second through-electrodes into pairs, and are partially constituted by fuses, and a third semiconductor chip having fourth connection lines which electrically connect the first through-electrodes of the first semiconductor chip into pairs, wherein the first and second is through-electrodes are connected in series between the first test pad and the second test pad by the first connection line, the second connection line, the third connection lines, and the fourth connection lines.
Abstract:
A bank interleaving controller may include a power calculator and a write driver. The power calculator may calculate a total power consumption by adding a power consumption of one or more memory banks that are performing write operations and an amount of power that is expected to be additionally consumed to write input data. The write driver may write the input data to a memory cell corresponding to an input address when the total power consumption is equal to or less than a reference power consumption.
Abstract:
A data input/output (I/O) device includes a plurality of data units and an I/O assembly. The plurality of data units is coupled to a global I/O (GIO) line through corresponding local I/O (LIO) lines and configured to receive or transmit a plurality of data groups through the corresponding LIO lines. At least one of the plurality of data units have a different operation speed. The I/O assembly performs serial/parallel conversion operations on the plurality of data groups including a high-speed data group and outputs results of the serial/parallel conversion operations. The high-speed data group is output from the at least one of the plurality of data units having the different operation speed.
Abstract:
A chip die including a first input/output (I/O) pad configured to transmit/receive an I/O signal of a memory cell array included in the chip die; a second I/O pad configured to, if a stacked chip die exists on the chip die, transmit/receive a via I/O signal of the stacked chip die, and configured to, if the stacked chip die does not exist on the chip die, transmit/receive a differential I/O signal of the chip die; and an I/O driver configured to receive an operation mode signal including information as to whether the stacked chip die exists on the chip die in such a manner that the second I/O pad is configured to transmit/receive the via I/O signal or the differential I/O signal.
Abstract:
A semiconductor device is implemented with a technology for removing a command bubbling generated when performing a rank-to-rank switching on chips that are stacked and interconnected through a through silicon via (TSV). The semiconductor device includes a first memory, a second memory stacked over the first memory to input/output data through a TSV, and an arbiter configured to adjust first data received from the first memory and second data received from the second memory through the TSV and provide the adjusted data to an input/output (I/O) pad.
Abstract:
A logic chip and memory chip stacked over the logic chip, the logic chip having a first surface facing the memory chip and a second surface opposite to the first surface and including: first and second internal input/output circuit units for exchanging signals; first external input/output circuit unit for exchanging signals through first external input/output pads formed according to an external interface standard of a first memory over the second surface; and second external input/output circuit unit for exchanging signals through second external input/output pads formed according to an external interface standard of a second memory over the second surface, wherein semiconductor device operates in one of a first mode in which the first internal input/output circuit unit and the first external input/output circuit unit are enabled and a second mode in which the first and second internal input/output circuit units and the second external input/output circuit unit are enabled.