Abstract:
A display panel includes: a backlight assembly emitting light; and a display panel receiving the light to display an image. The display panel includes: a display substrate; a counter substrate; and an anti-reflective film. The display panel includes: a plurality of pixels; signal lines electrically connected to the plurality of pixels; and an anti-reflective layer disposed on the signal lines to reduce an amount of the light reflected from the signal lines. The counter substrate is coupled with the display substrate, and is disposed between the display substrate and the backlight assembly. The anti-reflective layer includes a plurality of auxiliary layers laminated to each other, the plurality of auxiliary layers have different refractive indexes, and one of the plurality of auxiliary layers includes aluminum zinc tin oxide (AZTO).
Abstract:
An electronic device includes a display module that includes a foldable display portion and a non-foldable display portion, and a window disposed above the display module and that includes a foldable portion that corresponds to the foldable display portion and a non-foldable portion that corresponds to the non-foldable display portion. The window includes a first glass substrate, a second glass substrate that faces the first glass substrate, a protection layer that corresponds to the non-foldable portion and that is disposed between the first glass substrate and the second glass substrate and that includes an inorganic oxide, and a photoresist layer disposed between the protection layer and the first glass substrate. The first glass substrate includes a recessed portion that corresponds to the foldable portion formed on one surface adjacent to the protection layer.
Abstract:
A method for manufacturing a display device includes providing a first display device assembly comprising a display module, a first window disposed on the display module, a first window adhesive layer disposed between the display module and the first window, and a first protective layer disposed on the first window. The first protective layer is removed. The first window is removed by providing an acid solution on the first display device assembly. A second window is provided that is disposed on the display module after the first window is removed. A second protective layer is provided that is disposed on the second window after the first protective layer is removed.
Abstract:
Provided is a method of manufacturing a mask including preparing a support plate, forming a light blocking layer on the support plate, curing a predetermined region of the light blocking layer, and removing other region of the light blocking layer, excluding the predetermined region.
Abstract:
A thin film transistor array panel includes: a semiconductor layer disposed on an insulation substrate; a gate electrode overlapping the semiconductor layer; a source electrode and a drain electrode overlapping the semiconductor layer; a first barrier layer disposed between the source electrode and the semiconductor layer; and a second barrier layer disposed between the drain electrode and the semiconductor layer, wherein the first barrier layer and the second barrier layer include nickel-chromium (NiCr).
Abstract:
Provided is a method of manufacturing a mask including preparing a support plate, forming a light blocking layer on the support plate, curing a predetermined region of the light blocking layer, and removing other region of the light blocking layer, excluding the predetermined region.
Abstract:
A thin film transistor array panel includes a gate line, a gate insulating layer that covers the gate line, a semiconductor layer that is disposed on the gate insulating layer, a data line and drain electrode that are disposed on the semiconductor layer, a passivation layer that covers the data line and drain electrode and has a contact hole that exposes a portion of the drain electrode, and a pixel electrode that is electrically connected to the drain electrode through the contact hole. The data line and drain electrode each have a double layer that includes a lower layer of titanium and an upper layer of copper, and the lower layer is wider than the upper layer, and the lower layer has a region that is exposed. The gate insulating layer may have a step shape.
Abstract:
A thin film transistor includes: a substrate; an oxide semiconductor layer disposed on the substrate; a source electrode and a drain electrode each connected to the oxide semiconductor layer and facing each other with respect to the oxide semiconductor layer; an insulating layer disposed on the oxide semiconductor layer; and a gate electrode disposed on the insulating layer. The insulating layer includes a first layer that includes silicon oxide (SiOx), a second layer that is a hydrogen blocking layer, and a third layer that includes silicon nitride (SiNx). The first, second and third layers are sequentially stacked.
Abstract:
A thin film transistor array panel includes a gate line, a gate insulating layer that covers the gate line, a semiconductor layer that is disposed on the gate insulating layer, a data line and drain electrode that are disposed on the semiconductor layer, a passivation layer that covers the data line and drain electrode and has a contact hole that exposes a portion of the drain electrode, and a pixel electrode that is electrically connected to the drain electrode through the contact hole. The data line and drain electrode each have a double layer that includes a lower layer of titanium and an upper layer of copper, and the lower layer is wider than the upper layer, and the lower layer has a region that is exposed. The gate insulating layer may have a step shape.
Abstract:
A display apparatus includes a base substrate and a buffer layer disposed on the base substrate. The display apparatus further includes an oxide semiconductor layer disposed on the buffer layer and including a source electrode, a drain electrode, and a channel portion. The display apparatus further includes a gate insulating layer disposed on the channel portion, a gate electrode disposed on the gate insulating layer, and a protective layer disposed on the gate electrode and the buffer layer and having a contact hole. The display apparatus further includes a transparent electrode overlapping a portion of the protective layer and electrically connected to one of the source electrode and the drain electrode through the contact hole. The transparent electrode includes a transparent metal layer and a transparent conductive oxide layer overlapping the transparent metal layer.