Abstract:
An apparatus configured to transmit power, and transceive data, using mutual resonance, includes a power transmitter configured to wirelessly transmit power to a device, using a power transmission frequency as a resonant frequency. The apparatus further includes a communication unit configured to transceive data to and from the device, using a communication frequency as a resonant frequency. The apparatus further includes a controller configured to determine a charging state of the device based on the data received from the device, and control an amount of the power based on the charging state.
Abstract:
An apparatus and a method for charge control are provided. The apparatus for charge control may include an integrated direct current-to-direct current (DC/DC) converter configured to step up an output voltage level of a load to be greater than or equal to a supply voltage level set in a power amplifier, and the power amplifier configured to convert a direct current (DC) voltage stepped up by the integrated DC/DC converter into an alternating current (AC) voltage based on a resonant frequency, and to amplify the converted AC voltage. The apparatus for charge control may include a rectification unit configured to convert an AC power received wirelessly into a DC power; and a DC/DC converter configured to step down a voltage level of the DC power to a voltage level required by a load in the receiving mode.
Abstract:
A wireless power relay apparatus includes a relay resonator configured to relay power from a source resonator configured to wirelessly transmit the power, to a target resonator configured to wirelessly receive the power through a mutual resonance, the relay resonator having a higher quality factor than the source resonator and the target resonator.
Abstract:
A wireless power transmitter for wirelessly transmitting power is provided. The wireless power transmitter includes four cells configured to wirelessly transmit power to a wireless power receiver; a power source configured to provide power to one of the four cells; and a connection unit configured to connect the four cells to each other, wherein the connection unit is further configured to connect the four cells in a cross configuration.
Abstract:
A wireless power transmission apparatus includes resonators configured to transmit a power wirelessly to another resonator, and a controller configured to control a current magnitude and/or a voltage magnitude of a power to be provided to each of the resonators. The apparatus further includes a feeder configured to provide the power to each of the resonators.
Abstract:
A resonant apparatus in a wireless power transmission system, includes a main resonant unit configured to form magnetic resonant coupling between the resonant apparatus and a resonator. The resonant apparatus further includes a field guiding resonant unit configured to focus a magnetic field on an internal portion of the main resonant unit, and a field additive resonant unit configured to adjust a magnitude of a magnetic field formed between the main resonant unit and the field guiding resonant unit.
Abstract:
A wireless power receiving device and a wireless power transmission apparatus are provided. The wireless power receiver may include a resonator configured to emit an electromagnetic field, a blocker configured to surround a portion of an exterior of the resonator, and a spacer disposed between the resonator and the blocker.
Abstract:
A wireless charging station, an electric vehicle charged wirelessly, and a method of charging an electric vehicle are provided. A wireless charging station include a charging unit configured to transmit power wirelessly to an electric vehicle, using a source resonator installed in the charging station; and a driving unit configured to move a target resonator connected to the source resonator from a position at which the target resonator is mounted on the charging unit to an installation space of the electric vehicle, when the electric vehicle is disposed in a charging area of the charging station.
Abstract:
A wireless power transmission apparatus includes resonators configured to transmit a power wirelessly to another resonator, and a controller configured to control a current magnitude and/or a voltage magnitude of a power to be provided to each of the resonators. The apparatus further includes a feeder configured to provide the power to each of the resonators.
Abstract:
A method and an apparatus for controlling wireless power transmission are provided. An apparatus for controlling wireless power transmission includes a controller configured to determine an output voltage of a power factor correction unit based on charging information of a battery, the power factor correction unit configured to correct an input voltage into the determined output voltage, and output a variable voltage, and a resonance unit configured to transmit power converted from the variable voltage to a wireless power reception apparatus.