Abstract:
A semiconductor device includes a substrate including a cell array region including a cell active region. An insulating pattern is on the substrate. The insulating pattern includes a direct contact hole which exposes the cell active region and extends into the cell active region. A direct contact conductive pattern is in the direct contact hole and is connected to the cell active region. A bit line is on the insulating pattern. The bit line is connected to the direct contact conductive pattern and extends in a direction orthogonal to an upper surface of the insulating pattern. The insulating pattern includes a first insulating pattern including a non-metal-based dielectric material and a second insulating pattern on the first insulating pattern. The second insulating pattern includes a metal-based dielectric material having a higher dielectric constant than a dielectric constant of the first insulating pattern.
Abstract:
A method of forming a pattern includes forming a first level pattern layer on a feature layer on a substrate. The first level pattern layer includes a plurality of first line patterns and a plurality of first space burying patterns. The first line patterns extend parallel to one another in a first direction and the first space burying patterns extend parallel to one another in the first direction with first line patterns alternately disposed with first space burying patterns A portion of the plurality of first space burying patterns may be removed to form a second direction pattern space extending intermittently or continuously in the first level pattern layer. A second burying layer filling the second direction pattern space may be formed to form a network structure pattern. The feature layer may be etched with the network structure pattern as an etch mask to form a pattern of holes.
Abstract:
Provided are semiconductor devices and methods of fabricating the same. The semiconductor devices include an interlayer insulating layer on a semiconductor substrate, contact pads on the semiconductor substrate and penetrating the interlayer insulating layer, a stopping insulating layer on the interlayer insulating layer, storage electrodes on the contact pads, upper supporters between upper parts of the storage electrodes, side supporters between the storage electrodes and the upper supporters, a capacitor dielectric layer on the storage electrodes, the side supporters, and the upper supporters, and a plate electrode on the capacitor dielectric layer.
Abstract:
Provided are semiconductor devices and methods of fabricating the same. The semiconductor devices include an interlayer insulating layer on a semiconductor substrate, contact pads on the semiconductor substrate and penetrating the interlayer insulating layer, a stopping insulating layer on the interlayer insulating layer, storage electrodes on the contact pads, upper supporters between upper parts of the storage electrodes, side supporters between the storage electrodes and the upper supporters, a capacitor dielectric layer on the storage electrodes, the side supporters, and the upper supporters, and a plate electrode on the capacitor dielectric layer.
Abstract:
A MOS transistor, can include a u-shaped cross-sectional channel region including spaced apart protruding portions separated by a trench and connected to one another by a connecting portion of the channel region at lower ends of the spaced apart protruding portions of the channel region. First and second impurity regions can be located at opposite ends of the -shaped cross-sectional channel region and separated from one another by the trench. A gate electrode can cover at least a planar face of the u-shaped cross-sectional channel region including the spaced apart protruding portions and the connecting portion and exposing the first and second impurity regions.
Abstract:
A semiconductor device may include a plurality of memory cells. The memory cells may be formed with respective fin shaped active regions with respective recesses formed therein. Thicknesses of the fins may be made relatively thicker around the recesses, such as by selective epitaxial growth around the recesses. The additional thicknesses may be asymmetrical so that portions of the fin on one side are larger than an opposite side. Related methods and systems are also disclosed.
Abstract:
A MOS transistor, can include a u-shaped cross-sectional channel region including spaced apart protruding portions separated by a trench and connected to one another by a connecting portion of the channel region at lower ends of the spaced apart protruding portions of the channel region. First and second impurity regions can be located at opposite ends of the -shaped cross-sectional channel region and separated from one another by the trench. A gate electrode can cover at least a planar face of the u-shaped cross-sectional channel region including the spaced apart protruding portions and the connecting portion and exposing the first and second impurity regions.
Abstract:
In a method of forming active patterns, first patterns are formed in a first direction on a cell region of a substrate, and a second pattern is formed on a peripheral circuit region of the substrate. The first pattern extends in a third direction crossing the first direction. First masks are formed in the first direction on the first patterns, and a second mask is formed on the second pattern. The first mask extends in a fourth direction crossing the third direction. Third masks are formed between the first masks extending in the fourth direction. The first and second patterns are etched using the first to third masks to form third and fourth patterns. Upper portions of the substrate are etched using the third and fourth patterns to form first and second active patterns in the cell and peripheral circuit regions.
Abstract:
A method of forming a DRAM can include forming a plurality of transistors arranged in a first direction on a substrate and forming a bit line structure that extends in the first direction, where the bit line structure being electrically coupled to the plurality of transistors at respective locations in the first direction. A plurality of first landing pads an be formed at alternating ones of the respective locations having a first position in a second direction on the substrate. A plurality of second landing pads can be formed at intervening ones of the respective locations between the alternating ones of the respective locations, where the intervening ones of the respective locations having a second position in the second direction on the substrate wherein second position is shifted in the second direction relative to the first position.
Abstract:
A method for fabricating a semiconductor device includes forming a device isolation layer pattern on a substrate to form an active region, the active region including a first contact forming region at a center p of the active region and second and third contact forming regions at edges of the active region, forming an insulating layer and a first conductive layer on the substrate, forming a mask pattern having an isolated shape on the first conductive layer, etching the first conductive layer and the insulating layer to expose the active region of the first contact forming region by using the mask pattern, to form an opening portion between pillar structures, forming a second conductive layer in the opening, and patterning the second conductive layer and the first preliminary conductive layer pattern to form a wiring structure contacting the first contact forming region and having an extended line shape.