Abstract:
Provided is a method of manufacturing a semiconductor package. The method includes mounting a semiconductor device on a substrate; disposing a mold on the substrate, wherein the mold is formed to cover the semiconductor device such that at least one inner side surface of the mold has a slope; providing a molding material into the mold to encapsulate the semiconductor device; removing the mold from the substrate; and forming an electromagnetic shielding (EMS) layer to cover a top surface and side surfaces of the molding material.
Abstract:
A semiconductor device includes a first PMOS transistor, a first NMOS transistor, and a second NMOS transistor connected to an output node of the first PMOS and NMOS transistors. The first PMOS transistor includes first nanowires, first source and drain regions on opposite sides of each first nanowire, and a first gate completely surrounding each first nanowire. The first NMOS transistor includes second nanowires, second source and drain regions on opposite sides of each second nanowire, and a second gate extending from the first gate and completely surrounding each second nanowire. The second NMOS transistor includes third nanowires, third source and drain regions on opposite sides of each third nanowire, and a third gate, separated from the first and second gates, and completely surrounding each third nanowire. A number of third nanowires is greater than that of first nanowires. The first and second gates share respective first and second nanowires.
Abstract:
A remote control apparatus, a method of providing a vibration feedback thereof, and a display system are provided. The remote control apparatus includes an input unit configured to receive a user input, a communicator configured to perform transmissions and receptions with an external apparatus that is an object to be controlled, a vibrator configured to generate vibrations, and a controller configured to, in response to a signal for notifying that a preset operation is performed in the external apparatus, being received through the communicator, generate vibrations.
Abstract:
A display apparatus and a displaying method thereof are provided. The displaying method of the display apparatus includes displaying a cursor, changing a manipulation mode of the display apparatus based on an input, and changing the cursor to a highlight or a mode guide icon corresponding to the changed manipulation mode.
Abstract:
A semiconductor device includes a first PMOS transistor, a first NMOS transistor, and a second NMOS transistor connected to an output node of the first PMOS and NMOS transistors. The first PMOS transistor includes first nanowires, first source and drain regions on opposite sides of each first nanowire, and a first gate completely surrounding each first nanowire. The first NMOS transistor includes second nanowires, second source and drain regions on opposite sides of each second nanowire, and a second gate extending from the first gate and completely surrounding each second nanowire. The second NMOS transistor includes third nanowires, third source and drain regions on opposite sides of each third nanowire, and a third gate, separated from the first and second gates, and completely surrounding each third nanowire. A number of third nanowires is greater than that of first nanowires. The first and second gates share respective first and second nanowires.
Abstract:
A static random access memory (SRAM) device includes a circuit element that includes a first inverter having a first load transistor and a first drive transistor and a second inverter having a second load transistor and a second drive transistor. Input and output nodes of the first inverter and the second inverter are cross-connected to each other. A first transfer transistor is connected to the output node of the first inverter, and a second transfer transistor is connected to the output nodes of the second inverter. Each of the first and second load transistors, the first and second drive transistors, and the first and second transfer transistors includes a transistor having multi-bridge channels. At least one of the first and second load transistors, the first and second drive transistors, and the first and second transfer transistors includes a transistor having a different number of multi-bridge channels from the other transistors.
Abstract:
There is provided a display apparatus which includes a display configured to display a content search user interface (UI) including a scroll element that scrolls contents in a preset direction and a pointer that selects one of the contents according to a scroll command; a user interface configured to receive the scroll command to control a movement of the pointer; and a processor configured to determine a degree of a content search interval between the contents based on a distance between the pointer and the scroll element.
Abstract:
A display apparatus is provided. The display apparatus includes a communicator configured to perform communication with a remote control apparatus having a touch pad, a display configured to display a first GUI corresponding to a touch input on the touch pad, and a controller configured to, in response to receiving location information of the touch input, provide a visual feedback via the first GUI to guide an executable touch interaction at a corresponding touch location based on the received location information.
Abstract:
A moving apparatus for cleaning is provided. The moving apparatus includes a cleaner for cleaning, a traveler for moving the moving apparatus, an image sensor for capturing an image of surroundings of the moving apparatus, and at least one processor configured to control the image sensor to detect at least one mark among a plurality of marks, respectively corresponding to different distances of the moving apparatus in relation to a station apparatus, from the image captured by the image sensor, and control the traveler to move the moving apparatus to a location of the station apparatus, which is determined based on the image where the mark is detected.
Abstract:
A static random access memory (SRAM) device includes a circuit element that includes a first inverter having a first load transistor and a first drive transistor and a second inverter having a second load transistor and a second drive transistor. Input and output nodes of the first inverter and the second inverter are cross-connected to each other. A first transfer transistor is connected to the output node of the first inverter, and a second transfer transistor is connected to the output nodes of the second inverter. Each of the first and second load transistors, the first and second drive transistors, and the first and second transfer transistors includes a transistor having multi-bridge channels. At least one of the first and second load transistors, the first and second drive transistors, and the first and second transfer transistors includes a transistor having a different number of multi-bridge channels from the other transistors.