Abstract:
A semiconductor device includes a device chip coupled to an electrode chip. The device chip includes a first device electrode on a first substrate, and the electrode chip includes a first pad electrode extending at least partially through a second substrate. The first pad electrode is electrically connected to the first device electrode and includes spaced conductive sections which serve as a heat dissipating structure to transfer heat received from the device chip and the electrode chip. A method for making a semiconductor device includes using the substrate of the electrode chip as a support during thinning the substrate of the device chip.
Abstract:
According to example embodiments, a high electron mobility transistor (HEMT) includes a first semiconductor layer on a substrate and a second semiconductor layer on the first semiconductor layer. The first and second semiconductor layers define a recessed region. A semiconductor doped layer is in the recessed region of first and second semiconductor layers. A 2-dimensional electron gas (2DEG) region is at a portion of the first semiconductor layer adjacent to both sides of the semiconductor doped layer.
Abstract:
According to example embodiments, a high electron mobility transistor (HEMT) includes a first semiconductor layer on a substrate and a second semiconductor layer on the first semiconductor layer. The first and second semiconductor layers define a recessed region. A semiconductor doped layer is in the recessed region of first and second semiconductor layers. A 2-dimensional electron gas (2DEG) region is at a portion of the first semiconductor layer adjacent to both sides of the semiconductor doped layer.
Abstract:
A method of packaging power devices at a wafer level is disclosed. The method includes preparing a wafer having a plurality of nitride power devices thereon, each of the plurality of nitride power devices having a plurality of electrodes thereon; forming a polymer layer on the plurality of nitride power devices; exposing each of the electrodes from the polymer layer; forming a solder bump on the exposed electrodes; forming a molding layer covering the solder bump on the polymer layer; and removing the wafer and exposing the solder bump.