Abstract:
A light emitting device package includes a package substrate and a submount on the package substrate. An upper surface of the submount includes a central region, first and second base regions spaced from the package substrate, relative to the central region, and a sloped region between the central region and the first and second base regions. A light emitting device chip is in the central region. A first electrode layer is between the central region and the light emitting device chip and extends onto the sloped region and the first base region. A second electrode layer is between the central region and the light emitting device chip, extends onto the sloped region and the second base region, and is spaced apart from the first electrode layer. First and second reflective layers are on the first and second electrode layers, respectively, and overlap the sloped region.
Abstract:
A method of manufacturing a semiconductor substrate may include: forming a buffer layer on a growth substrate; forming a plurality of openings in the buffer layer, the plurality of openings penetrating through the buffer layer and being spaced apart from one another; forming a plurality of cavities on the growth substrate, the plurality of cavities being aligned to respectively correspond to the plurality of openings; growing a semiconductor layer on the buffer layer, the growing the semiconductor layer including filling the plurality of openings with the semiconductor layer; and separating the buffer layer and the semiconductor layer from the growth substrate, wherein a diameter of each of the plurality of openings at a boundary between the growth substrate and the buffer layer is smaller than a diameter of each of the plurality of cavities at the boundary.
Abstract:
An embodiment of the present inventive concept provides an ultraviolet light emitting device comprising: a substrate having a concave or convex edge pattern disposed along an edge of an upper surface thereof; a semiconductor laminate disposed on the substrate and including first and second conductivity-type AlGaN semiconductor layers and an active layer disposed between the first and second conductivity-type AlGaN semiconductor layers and having an AlGaN semiconductor; a plurality of uneven portions extending from the edge pattern along the side surface of the semiconductor laminate in a stacking direction; and first and second electrodes connected to the first and second conductivity-type AlGaN semiconductor layers, respectively.
Abstract:
A semiconductor light emitting device includes a first conductivity-type semiconductor layer; an active layer covering a portion of the first conductivity-type semiconductor layer; and a second conductivity-type semiconductor layer covering a portion of the active layer, and sidewalls of the second conductivity-type semiconductor layer are spaced apart from sidewalls of the active layer along a horizontal direction.
Abstract:
A method of manufacturing a semiconductor light emitting device, the method including forming a first conductivity-type semiconductor layer on a substrate; forming an active layer on the first conductivity-type semiconductor layer; forming a mask layer having an opening on the active layer; growing a second conductivity-type semiconductor layer through the opening; removing the mask layer; removing a portion of the active layer and a portion of the first conductivity-type semiconductor layer that do not overlap the second conductivity-type semiconductor layer; and removing a portion of the first conductivity-type semiconductor layer to expose the substrate.
Abstract:
A semiconductor light emitting device includes a light emitting stack including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, a plurality of holes through the second conductive semiconductor layer and the active layer, a trench extending along an edge of the light emitting stack, the trench extending through the second conductive semiconductor layer and the active layer, and a reflective metal layer within the plurality of holes and within the trench.
Abstract:
An ultraviolet light emitting device including a first conductivity-type AlGaN semiconductor layer; an active layer disposed on the first conductivity-type AlGaN semiconductor layer and having an AlGaN semiconductor; a second conductivity-type AlGaN semiconductor layer disposed on the active layer and having an upper surface divided into a first region and a second region; second conductivity-type nitride patterns disposed on the first region of the second conductivity-type AlGaN semiconductor layer and having an energy band gap that is smaller than an energy band gap of the second conductivity-type AlGaN semiconductor layer; a transparent electrode layer covering the second conductivity-type nitride patterns and the second region of the second conductivity-type AlGaN semiconductor layer; a light-transmissive dielectric layer disposed on the transparent electrode layer between the second conductivity-type nitride patterns; and a metal electrode disposed on the transparent electrode layer overlying the second conductivity type nitride patterns and on the light-transmissive dielectric layer.