Abstract:
At least one example embodiment discloses a method of controlling a nonvolatile memory device including a plurality of blocks, each block including a plurality of physical pages. The method includes receiving a plurality of logical pages associated with a first plurality of logical addresses, respectively, and writing the first plurality of logical pages to the plurality physical addresses according to an ascending order of the logical addresses of the first plurality of logical pages.
Abstract:
A memory system includes a memory controller; and a memory device, the memory device including a memory cell array, the memory cell array including least a first memory page having a plurality of memory cells storing a plurality of stored bits, the memory controller being such that, the memory controller performs a first hard read operation on the first memory page to generate a plurality of read bits corresponding to the plurality of stored bits, and if the memory controller determines to change a value of one of a first group of bits, from among the plurality of read bits, the memory controller selects one of the first group of bits based on log likelihood ratio (LLR) values corresponding, respectively, to each of the first group of bits, and changes the value of the selected bit.
Abstract:
A method generating a cryptographic key and corresponding helper data includes measuring an analog value associated with a physical property of cells of a memory array; digitizing the measured analog value to generate the cryptographic key; quantizing the measured analog value to generate the corresponding non-leaky helper data.
Abstract:
A method of operating a memory device includes programming a first data signal to a first memory cell, attempting to program a second data signal to the first memory cell in a state where the first memory cell is not erased, and marking the first memory cell as blank upon failing to program the second data signal to the first memory cell.