Abstract:
A voltage doubler includes first to fourth transistors, a first capacitor connected between a first node and a first clock terminal configured to receive a first clock signal. A second capacitor is connected between a second node and a second clock terminal configured to receive an inverted first clock signal. A first gate control unit is configured to control the first and second transistors using the first clock signal and the inverted first clock signal, and a second gate control unit is configured to control the third and fourth transistors using a second clock signal and an inverted second clock signal. A load capacitor is connected between the output terminal and a ground terminal.
Abstract:
A memory device includes a memory cell array, a row decoder connected to the memory cell array by a plurality of string selection lines, a plurality of word lines, and a plurality of ground selection lines, and a common source line driver connected to the memory cell array by a common source line. The memory cell array is located in an upper chip, at least a portion of the row decoder is located in a lower chip, at least a portion of the common source line driver is located in the upper chip, and a plurality of upper bonding pads of the upper chip are connected to a plurality of lower bonding pads of the lower chip to connect the upper chip to the lower chip.
Abstract:
A high voltage switch of a nonvolatile memory device includes a depletion type NMOS transistor configured to switch a second driving voltage in response to an output signal of the high voltage switch; at least one inverter configured to convert a voltage of an input signal of the high voltage switch into a first driving voltage or a ground voltage, wherein the first and second driving voltages are received from an external device; and a PMOS transistor configured to transfer the second driving voltage provided to a first terminal of the PMOS transistor from the depletion type NMOS transistor to a second terminal of the PMOS transistor as the output signal in response to an output of the at least one inverter, wherein the output of the at least one inverter is transferred to a gate terminal of the PMOS transistor.
Abstract:
A nonvolatile memory device includes a memory cell array; and a high voltage generator arranged to generate a high voltage to be supplied to the memory cell array. The high voltage generator includes a pump unit block having a plurality of pump units supplied with an external voltage and at least one of the pumps is engaged in pumping the external voltage to a higher, output, voltage, at a steady clock rate. The number of pumps engaged in pumping is increased until a predetermined period has elapsed. The rate at which the number of pumps is increased depends upon the value of the external voltage.
Abstract:
A nonvolatile memory device includes a memory cell array; and a high voltage generator arranged to generate a high voltage to be supplied to the memory cell array. The high voltage generator includes a pump unit block having a plurality of pump units supplied with an external voltage and at least one of the pumps is engaged in pumping the external voltage to a higher, output, voltage, at a steady clock rate. The number of pumps engaged in pumping is increased until a predetermined period has elapsed. The rate at which the number of pumps is increased depends upon the value of the external voltage.
Abstract:
A memory device includes a memory cell array, a row decoder connected to the memory cell array by a plurality of string selection lines, a plurality of word lines, and a plurality of ground selection lines, and a common source line driver connected to the memory cell array by a common source line. The memory cell array is located in an upper chip, at least a portion of the row decoder is located in a lower chip, at least a portion of the common source line driver is located in the upper chip, and a plurality of upper bonding pads of the upper chip are connected to a plurality of lower bonding pads of the lower chip to connect the upper chip to the lower chip.
Abstract:
A memory device includes a first page buffer supplying a first bias voltage to a selected bitline in a bitline precharge phase; and a second page buffer supplying a second bias voltage to an unselected bitline, adjacent to the selected bitline, in the bitline precharge phase, wherein the first page buffer includes a first bitline precharge circuit supplying the first bias voltage to the selected bitline, the second page buffer includes a second bitline precharge circuit supplying the second bias voltage to the unselected bitline, wherein the second page buffer floats the unselected bitline in a sensing phase for detecting data of a selected memory cell connected to the selected to bitline.
Abstract:
A high voltage switch operates in response to a first drive voltage and a second drive voltage higher than the first drive voltage. The high voltage switch includes a PMOS transistor transmitting the second drive voltage to an output terminal according to a voltage applied to its gate, a first depletion mode transistor providing the second drive voltage to the PMOS transistor according to an output signal fed back from the output terminal, a second depletion mode transistor receiving the second drive voltage through one end and providing a switching voltage to another end according to a switching control signal, and a level shifter providing the switching voltage to a gate of the PMOS transistor according to an enable signal and a reverse enable signal.
Abstract:
A high voltage switch of a nonvolatile memory device includes a depletion type NMOS transistor configured to switch a second driving voltage in response to an output signal of the high voltage switch; at least one inverter configured to convert a voltage of an input signal of the high voltage switch into a first driving voltage or a ground voltage, wherein the first and second driving voltages are received from an external device; and a PMOS transistor configured to transfer the second driving voltage provided to a first terminal of the PMOS transistor from the depletion type NMOS transistor to a second terminal of the PMOS transistor as the output signal in response to an output of the at least one inverter, wherein the output of the at least one inverter is transferred to a gate terminal of the PMOS transistor.