摘要:
Apparatus and methods are described for fabricating a compound nitride semiconductor structure. Group-III and nitrogen precursors are flowed into a first processing chamber to deposit a first layer over a substrate with a thermal chemical-vapor-deposition process. The substrate is transferred from the first processing chamber to a second processing chamber. Group-III and nitrogen precursors are flowed into the second processing chamber to deposit a second layer over the first layer with a thermal chemical-vapor-deposition process. The first and second group-III precursors have different group-III elements.
摘要:
A method of suppressing parasitic particle formation in a metal organic chemical vapor deposition process is described. The method may include providing a substrate to a reaction chamber, and introducing an organometallic precursor, a particle suppression compound and at least a second precursor to the reaction chamber. The second precursor reacts with the organometallic precursor to form a nucleation layer on the substrate. Also, a method of suppressing parasitic particle formation during formation of a III-V nitride layer is described. The method includes introducing a group III metal containing precursor to a reaction chamber. The group III metal precursor may include a halogen. A hydrogen halide gas and a nitrogen containing gas are also introduced to the reaction chamber. The nitrogen containing gas reacts with the group III metal precursor to form the Ill-V nitride layer on the substrate.
摘要:
A compound nitride semiconductor substrate includes a substrate having a first side and a second side. A first layer overlies the first side of the substrate and a second layer overlies the second side of the substrate. The first layer includes a first group-III element and nitrogen. The second layer includes a second group-III element and nitrogen.
摘要:
Methods and systems permit fabricating structures using liquid sources without active temperature control. A liquid or solid source of the precursor is provided in a bubbler. A carrier gas source is flowed into the source to generate a flow of precursor vapor carried by the carrier gas. A relative concentration of the precursor vapor to the carrier gas of the flow is measured. A mass flow rate of the precursor in the flow is determined from the measured relative concentration. A flow rate of the carrier gas into the source is changed to maintain the mass flow rate at a defined value or within a defined range.
摘要:
Methods are provided of fabricating a nitride semiconductor structure. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over one side of the substrate with a thermal chemical-vapor-deposition process. A second layer is similarly deposited over an opposite side of the substrate using the group-III precursor and the nitrogen precursor. The substrate is cooled after depositing the first and second layers without substantially deforming a shape of the substrate.
摘要:
Methods are provided of fabricating compound nitride semiconductor structures. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over a surface of a first substrate with a thermal chemical-vapor-deposition process. A second layer is deposited over a surface of a second substrate with the thermal chemical-vapor-deposition process using the first group-III precursor and the first nitrogen precursor. The first and second substrates are different outer substrates of a plurality of stacked substrates disposed within the processing chamber as a stack so that the first and second layers are deposited on opposite sides of the stack. Deposition of the first layer and deposition of the second layer are performed simultaneously.
摘要:
Methods are provided of fabricating a nitride semiconductor structure. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over one side of the substrate with a thermal chemical-vapor-deposition process. A second layer is similarly deposited over an opposite side of the substrate using the group-III precursor and the nitrogen precursor. The substrate is cooled after depositing the first and second layers without substantially deforming a shape of the substrate.
摘要:
Methods and systems permit fabricating structures using liquid sources without active temperature control. A substrate is disposed within a substrate processing chamber. A liquid source of a group-III precursor is provided in a bubbler. A push gas is applied to the liquid source to drive the group-III precursor into a vaporizer. A carrier gas is flowed into the vaporizer. A flow of vaporized group-III precursor carried by the carrier gas is injected from the vaporizer into the processing chamber. A nitrogen precursor is flowed into the processing chamber. A group-III nitride layer is deposited over the substrate with a thermal chemical vapor deposition within the processing chamber using the vaporized group-III precursor and the nitrogen precursor.
摘要:
Methods are provided of fabricating compound nitride semiconductor structures. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over a surface of a first substrate with a thermal chemical-vapor-deposition process. A second layer is deposited over a surface of a second substrate with the thermal chemical-vapor-deposition process using the first group-III precursor and the first nitrogen precursor. The first and second substrates are different outer substrates of a plurality of stacked substrates disposed within the processing chamber as a stack so that the first and second layers are deposited on opposite sides of the stack. Deposition of the first layer and deposition of the second layer are performed simultaneously.
摘要:
A gaseous mixture is deposited onto a substrate surface using a showerhead. A first plenum of the showerhead has a plurality of channels fluidicly coupled with an interior of a processing chamber. A second plenum gas flows through a plurality of tubes extending from a second plenum of the showerhead through the channels into the interior of the processing chamber. The diameter of the tubes is smaller than the diameter of the channels such that a first plenum gas flows into the interior of the processing chamber through a space defined between the outer surface of the tubes and the surface of the channels. The length and diameter of the tubes determine the level of distribution and the molar ratio of the first gas and the second gas in the gaseous mixture that is deposited on the surface of the substrate.