摘要:
The present invention provides, in one embodiment, a method of forming a copper layer (100) over a semiconductor substrate (105). The method comprises coating a copper seed layer (110) located over a semiconductor substrate with a protective agent (120) to form a protective layer (125). The method also includes placing the semiconductor substrate in an acid bath (145) to remove the protective layer. The method further includes electrochemically depositing a second copper layer (155) on the copper seed layer. Such methods and resulting conductive structures thereof may be advantageously used in methods to manufacture integrated circuits comprising copper interconnects.
摘要:
The present invention forms sidewall diffusion barrier layer(s) that mitigate hydrogen contamination of ferroelectric capacitors. Sidewall diffusion barrier layer(s) of the present invention are formed via a physical vapor deposition process at a low temperature. By so doing, the sidewall diffusion barrier layer(s) are substantially amorphous and provide superior protection against hydrogen diffusion than conventional and/or crystalline sidewall diffusion barrier layers.
摘要:
A ferroelectric capacitor stack is formed over a metal-dielectric interconnect layer. After forming the interconnect layer, the surface of the interconnect layer is treated with gas cluster ion beam (GCIB) processing. Prior to this processing, the surface typically includes metal recesses. The GCIB processing smoothes these recesses and provides a more level surface on which to form the ferroelectric capacitor stack. When the ferroelectric capacitor stack is formed on this leveled surface, leakage is reduced and yields increased as compared to the case where GCIB processing is not used.
摘要:
The present invention provides, in one embodiment, a method of forming a copper layer (100) over a semiconductor substrate (105). The method comprises coating a copper seed layer (110) located over a semiconductor substrate with a protective agent (120) to form a protective layer (125). The method also includes placing the semiconductor substrate in an acid bath (145) to remove the protective layer. The method further includes electrochemically depositing a second copper layer (155) on the copper seed layer. Such methods and resulting conductive structures thereof may be advantageously used in methods to manufacture integrated circuits comprising copper interconnects.
摘要:
The present invention provides a ferroelectric capacitor, a method of manufacture therefor, and a method of manufacturing a ferroelectric random access memory (FeRAM) device. The ferroelectric capacitor (100), among other elements, includes a substantially planar ferroelectric dielectric layer (165) located over a first electrode layer (160), wherein the substantially planar ferroelectric dielectric layer (165) has an average surface roughness of less than about 4 nm. The ferroelectric capacitor (100) further includes a second electrode layer (170) located over the substantially planar ferroelectric dielectric layer (165).
摘要:
The present invention provides a ferroelectric capacitor, a method of manufacture therefor, and a method of manufacturing a ferroelectric random access memory (FeRAM) device. The ferroelectric capacitor (100), among other elements, includes a substantially planar ferroelectric dielectric layer (165) located over a first electrode layer (160), wherein the substantially planar ferroelectric dielectric layer (165) has an average surface roughness of less than about 4 nm. The ferroelectric capacitor (100) further includes a second electrode layer (170) located over the substantially planar ferroelectric dielectric layer (165).
摘要:
A dual tunnel barrier magnetic element has a free magnetic layer positioned between first and second tunnel barriers and an electrode over the second tunnel barrier. A two step etch process allows for forming an encapsulation material on a side wall of the electrode and the second tunnel barrier subsequent to the first etch for preventing damage to the first tunnel barrier when performing the second etch to remove a portion of the free layer.
摘要:
A process of forming an electronic device can include forming a stack including a tunnel barrier layer. The tunnel barrier layer can have a ratio of the metal atoms to oxygen atoms of greater than a stoichiometric ratio, wherein the ratio has a particular value. The process can also include forming a gettering layer having a composition capable of gettering oxygen, and depositing an insulating layer over the gettering layer. The process can further include exposing the insulating layer to a temperature of at least approximately 60° C. In one embodiment, after such exposure, a portion of the gettering layer is converted to an insulating material. In another embodiment, an electronic device can include a magnetic tunnel junction and an adjacent insulating layer lying within an opening in another insulating layer.
摘要:
A conductive via for connecting between a digit line and one side of the magnetic device is positioned beneath, and aligned with, each magnetic device. Other contacts may satisfy the same design rules, using the same process step. An electrode formed on the conductive via is polished to eliminate step functions or seams originating at the conductive via from propagating up through the various deposited layers. This integration approach allows for improved scaling of the MRAM devices to at least a 45 nanometer node, a cell packing factor approaching 6F2, and a uniform thickness of material between the bit lines and the underlying memory elements.
摘要:
Hardmasks and fabrication methods are presented for producing ferroelectric capacitors in a semiconductor device, wherein a hardmask comprising aluminum oxide or strontium tantalum oxide is formed above an upper capacitor electrode material, and capacitor electrode and ferroelectric layers are etched to define a ferroelectric capacitor stack.