Abstract:
A metal wiring suitable for a substrate of large size is provided. The present invention is characterized in that at least one layer of conductive film is formed on an insulating surface, a resist pattern is formed on the conductive film, and the conductive film having the resist pattern is etched to form a metal wiring while controlling its taper angle α in accordance with the bias power density, the ICP power density, the temperature of lower electrode, the pressure, the total flow rate of etching gas, or the ratio of oxygen or chlorine in etching gas. The thus formed metal wiring has less fluctuation in width or length and can satisfactorily deal with an increase in size of substrate.
Abstract:
A high reliability semiconductor display device is provided. A semiconductor layer in the semiconductor display device has a channel forming region, an LDD region, a source region, and a drain region, and the LDD region overlaps a first gate electrode, sandwiching a gate insulating film.
Abstract:
One embodiment of the present invention relates to a light-emitting device comprising an insulating surface; a lower electrode over the insulating surface; a protrusion over the insulating surface having a sidewall sloping toward the lower electrode; a light-transmitting partition overlapping with an end portion of the lower electrode and the sidewall of the protrusion; and a light-emitting element including the lower electrode, an upper electrode overlapping with the lower electrode, and a layer containing a light-emitting organic compound between the lower electrode and the upper electrode. In the light-emitting device, the sidewall of the protrusion can reflect light emitted from the light-emitting element. As a result, the light-emitting device that has reduced power consumption is provided.
Abstract:
One embodiment of the present invention relates to a light-emitting device comprising an insulating surface; a lower electrode over the insulating surface; a protrusion over the insulating surface having a sidewall sloping toward the lower electrode; a light-transmitting partition overlapping with an end portion of the lower electrode and the sidewall of the protrusion; and a light-emitting element including the lower electrode, an upper electrode overlapping with the lower electrode, and a layer containing a light-emitting organic compound between the lower electrode and the upper electrode. In the light-emitting device, the sidewall of the protrusion can reflect light emitted from the light-emitting element. As a result, the light-emitting device that has reduced power consumption is provided.
Abstract:
Disclosed is an electroluminescence device having a substrate, a thin film transistor over the substrate, an insulating film over the thin film transistor, an electroluminescence element over the insulating film, a passivation film over the electroluminescence element, and a counter substrate over the passivation film. The electroluminescence element is configured to emit light through the counter substrate, and a space between the substrate and the counter substrate is filled with a filler. The electroluminescence device is featured by the tapered side surface of a gate electrode of the thin film transistor.
Abstract:
There are provided a structure of a semiconductor device in which low power consumption is realized even in a case where a size of a display region is increased to be a large size screen and a manufacturing method thereof. A gate electrode in a pixel portion is formed as a three layered structure of a material film containing mainly W, a material film containing mainly Al, and a material film containing mainly Ti to reduce a wiring resistance. A wiring is etched using an IPC etching apparatus. The gate electrode has a taper shape and the width of a region which becomes the taper shape is set to be 1 μm or more.
Abstract:
Disclosed is an electroluminescence device having a substrate, a thin film transistor over the substrate, an insulating film over the thin film transistor, an electroluminescence element over the insulating film, a passivation film over the electroluminescence element, and a counter substrate over the passivation film. The electroluminescence element is configured to emit light through the counter substrate, and a space between the substrate and the counter substrate is filled with a filler. The electroluminescence device is featured by the tapered side surface of a gate electrode of the thin film transistor.
Abstract:
For forming a gate electrode, a conductive film with low resistance including Al or a material containing Al as its main component and a conductive film with low contact resistance for preventing diffusion of Al into a semiconductor layer are laminated, and the gate electrode is fabricated by using an apparatus which is capable of performing etching treatment at high speed.
Abstract:
A metal wiring suitable for a substrate of large size is provided. The present invention is characterized in that at least one layer of conductive film is formed on an insulating surface, a resist pattern is formed on the conductive film, and the conductive film having the resist pattern is etched to form a metal wiring while controlling its taper angle α in accordance with the bias power density, the ICP power density, the temperature of lower electrode, the pressure, the total flow rate of etching gas, or the ratio of oxygen or chlorine in etching gas. The thus formed metal wiring has less fluctuation in width or length and can satisfactorily deal with an increase in size of substrate.
Abstract:
To provide a highly reliable light-emitting device and especially a light-emitting device which can be formed without use of a metal mask and includes a plurality of light-emitting elements. A structural body at least an end of which has an acute-angled shape is provided so that the end can pass downward through an electrically conductive film formed over the insulating layer and can be at least in contact with an insulating layer having elasticity, thereby physically separating the electrically conductive film, and the electrically conductive films are thus electrically insulated from each other. Such a structure may be provided between adjacent light-emitting elements so that the light-emitting elements can be electrically insulated from each other in the light-emitting device.