摘要:
A new technique for the formation of high quality ultrathin gate dielectrics is proposed. Gate oxynitride was first grown in N.sub.2 O and then annealed by in-situ rapid thermal NO-nitridation. This approach has the advantage of providing a tighter nitrogen distribution and a higher nitrogen accumulation at or near the Si--SiO.sub.2 interface than either N.sub.2 O oxynitride or nitridation of SiO.sub.2 in the NO ambient. It is applicable to a wide range of oxide thickness because the initial rapid thermal N.sub.2 O oxidation rate is slow but not as self-limited as NO oxidation. The resulting gate dielectrics have reduced charge trapping, lower stress-induced leakage current and significant resistance to interface state generation under electrical stress.
摘要:
Within a method for fabricating a microelectronic fabrication, and the microelectronic fabrication fabricated employing the method, there is formed within the microelectronic fabrication a capacitor structure which comprises a first capacitor plate layer having formed thereupon a capacitor dielectric layer in turn having formed thereupon a second capacitor plate layer, wherein each of the foregoing layers having an exposed sidewall to thus form a series of exposed sidewalls. The capacitor structure also comprises a silicon oxide dielectric layer formed passivating the series of exposed sidewalls of the first capacitor plate layer, the capacitor dielectric layer and the second capacitor plate layer a silicon oxide dielectric layer.
摘要:
A process for integrating the fabrication of a thick, copper inductor structure, with the fabrication of narrow channel length CMOS devices, has been developed. The integrated process features the use of only one additional photolithographic masking step, used to form the opening in an IMD layer, that will accommodate the subsequent inductor structure. After forming damascene type openings in the same IMD layer, in the CMOS region, copper is deposited and then defined, to result in a thick, copper inductor structure, in the opening in the IMD layer, in a first region of a semiconductor substrate, as well as to result in copper interconnect structures, in the damascene type openings located in a second region of the semiconductor structure, used for the narrow channel length CMOS devices. The use of a thick, copper inductor structure, equal to the thickness of the IMD layer, results in increased inductance, or an increased quality factor, when compared to counterparts formed with thinner metal inductors.
摘要:
A process is described for the manufacture of a capacitor having low V.sub.cc. Said process is fully compatible with standard IC manufacturing and introduces minimum modification thereto. The process involves the formation of a capacitor having both upper and lower electrodes that comprise layers of a metal silicide. The lower electrode is formed as a byproduct of the SALICIDE process while the upper electrode is formed by first laying down a layer of polysilicon followed by a layer of a silicide-forming metal such as titanium, cobalt, or tungsten. Sufficient of the metal must be provided to ensure that all of the polysilicon gets transformed to silicide.
摘要:
A capacitor for use within a microelectronic product employs a first capacitor plate layer that includes a first series of horizontally separated and interconnected tines. A capacitor dielectric layer separates the first capacitor plate layer from a second capacitor plate layer. The second capacitor plate layer includes a second series of horizontally separated and interconnected tines horizontally interdigitated with the first series of horizontally separated and interconnected tines. The capacitor is formed employing a self-aligned method and the capacitor dielectric layer is formed in a serpentine shape.
摘要:
A metal-over-metal (MOM) device and the method for manufacturing same is provided. The device has at least one device cell on a first layer comprising a frame piece and a center piece surrounded by the frame piece. The center piece has a cross-shape center portion defining four quadrants of space between the frame and center pieces. The center piece has one or more center fingers each extending from at least one of the four ends thereof within a quadrant. The frame piece also has one or more frame fingers extending therefrom, each being in at least one quadrant and not being overlapped with the center finger in the same quadrant.
摘要:
Within a method for fabricating a microelectronic fabrication, and the microelectronic fabrication fabricated employing the method, there is formed within the microelectronic fabrication a capacitor structure upon a conductor stud layer formed into a first via defined by a patterned dielectric layer to reach a one of a pair of patterned conductor layers within the microelectronic fabrication prior to forming through the patterned dielectric layer a second via to reach the other of the pair of patterned conductor layers within the microelectronic fabrication. The method provides the resulting microelectronic fabrication with enhanced reliability and performance.
摘要:
A stacked integrated circuit (IC) MIM capacitor structure and method for forming the same the MIM capacitor structure including a first MIM capacitor structure formed in a first IMD layer comprising an first upper and first lower electrode portions; at least a second MIM capacitor structure arranged in stacked relationship in an overlying IMD layer comprising a second upper electrode and second lower electrode to form an MIM capacitor stack; wherein, the first lower electrode is arranged in common electrical signal communication comprising metal filled vias with the second upper electrode and the first upper electrode is arranged in common electrical signal communication with the second lower electrode.
摘要:
A method for fabricating an improved metal-insulator-metal capacitor is achieved. An insulating layer is provided overlying conducting lines on a semiconductor substrate. Via openings through the insulating layer to the conducting lines are filled with metal plugs. A first metal layer is deposited overlying the insulating layer and the metal plugs. A capacitor dielectric layer is deposited overlying the first metal layer wherein capacitor dielectric layer is deposited as a dual layer, each layer deposited within a separate chamber whereby pinholes are eliminated. A second metal layer and a barrier metal layer are deposited overlying the capacitor dielectric layer. The second metal layer and the barrier metal layer are patterned to form a top plate electrode. Thereafter, the capacitor dielectric layer and the first metal layer are patterned to form a bottom plate electrode completing fabrication of a metal-insulator-metal capacitor.
摘要:
A metal-over-metal (MOM) device and the method for manufacturing same is provided. The device has at least one device cell on a first layer comprising a frame piece and a center piece surrounded by the frame piece. The center piece has a cross-shape center portion defining four quadrants of space between the frame and center pieces. The center piece has one or more center fingers each extending from at least one of the four ends thereof within a quadrant. The frame piece also has one or more frame fingers extending therefrom, each being in at least one quadrant and not being overlapped with the center finger in the same quadrant.