摘要:
A green ceramic heater including a green heating resistor formed of an electrically conductive ceramic (e.g., silicide or carbide of a metal element such as W, Ta, or Nb) and an insulative ceramic (e.g., silicon nitride) and power supply leads (e.g., made of W), a first end of each power supply lead being connected to a corresponding end of the green heating resistor, the green heating resistor and the power supply leads buried in a green substrate formed of a material (e.g., silicon nitride) is fired, and subsequently, the resultant ceramic heater is heat-treated at 900 to 1,600° C., to thereby enhance flexural strength of the ceramic heater. The heat treatment is preferably carried out prior to forming a glass layer on an outer circumferential surface of the ceramic heater. When the heat treatment is performed after the fired ceramic heater has been polished so as to expose a second end of each power supply lead from a surface of the substrate, the heat treatment is preferably carried out in an inert atmosphere.
摘要:
A ceramic heater includes a silicon nitride ceramic substrate and a heating member embedded in the silicon nitride ceramic substrate. An Al-thickened layer is formed in a surface layer portion of the silicon nitride ceramic substrate. The Al-thickened layer has an Al concentration higher than that of an internal layer portion of the silicon nitride ceramic substrate. The Al-thickened layer assumes such a graded composition structure that the Al concentration increases toward the surface of the silicon nitride ceramic substrate.
摘要:
A ceramic heater extending in an axial direction to have an elongate shape includes (a) a basal body; (b) a lead wire embedded in the basal body; and (c) a heating element embedded in the basal body. This heating element includes (1) a matrix ceramic phase; (2) conductive ceramic particles dispersed in the matrix ceramic phase; (3) a portion in which an end portion of the lead wire is embedded; and (4) a reference zone in terms of concentration of a particular element (e.g., rare-earth element). The heating element may include a condensed zone in terms of concentration of the particular element. The ceramic heater can be free from the condensed zone, or at least its formation is minimized to have a thickness of not greater than 5 &mgr;m. With this, the ceramic heater is improved in bending strength.
摘要:
In the production of a silicon nitride sintered body through a hot press method, a sintering aid protecting agent is added to the raw material. The employable protecting agents are metallic elements such as Ta, W and Mo and compounds of the metallic elements such as nitrides and silicides. Conversion of these elements and compounds to carbides occurs preferentially to reduction of the sintering aid. Thus, it becomes possible to suppress reduction of the sintering aid in a reducing atmosphere formed, for example, of carbon monoxide, which is generated particularly when a graphite pressing die is employed.
摘要:
The invention comprehends a silicon nitride sintered body having consistent qualities, a process for producing the same, a ceramic heater employing the silicon nitride sintered body as a substrate and a glow plug containing the ceramic heater as a heat source. In the production of a silicon nitride sintered body through a hot press method, a sintering aid protecting agent is added to the raw material. The employable protecting agents are metallic elements such as Ta, W and Mo and compounds of the metallic elements such as nitrides and silicides. Conversion of these elements and compounds to carbides occurs preferentially to reduction of the sintering aid. Thus, it becomes possible to suppress reduction of the sintering aid in a reducing atmosphere formed, for example, of carbon monoxide, which is generated particularly when a graphite pressing die is employed. A ceramic heater which comprises a substrate formed from the silicon nitride sintered body and a resistance heater embedded in the substrate is obtained. Further, a glow plug containing the ceramic heater serving as a heat source is obtained.
摘要:
Ceramic raw powder containing conductive ceramic powder is mixed with a prescribed quantity of a molding assistant containing carbon component. This mixture is molded into a prescribed shape of a resistive heating element to thereby produce a heating element mold. A composite mold is prepared by embedding the heating element mold into molds of a ceramic substrate. The composite mold is sintered at a sintering temperature of 1700.degree. C. or higher. During a process of rising temperature to the sintering temperature, the composite mold is kept in an oxygen containing atmosphere having an oxygen partial pressure of 2.times.10.sup.-4 to 1.0 Torr for 7 minutes or longer at a temperature of 1200.degree. C. or higher.
摘要:
A light-emitting device according to an embodiment of the present invention includes a light-emitting element, and a package substrate on which this light-emitting element is placed. This package substrate includes a placement face on which the light-emitting element is placed, a back face that is opposed to the placement face, and a mounting face that is opposed, between the placement face and the back face, to a mounting substrate when the light-emitting device is mounted, and includes a first recess portion that extends, on the mounting face, from the back face toward the placement face and that has a first heat conduction member formed on the surface thereof, and an intermediate heat conduction member for conducting heat between the light-emitting element and the first heat conduction member.
摘要:
A light emitting apparatus is provided, and the light emitting apparatus has a light emitting device mounted on a substrate or a resin package where a substrate surface or the resin package is resin-encapsulated by an encapsulating resin section added with a phosphor in such a manner to cover the light emitting device. A surface resin layer of a different color from that of the encapsulating resin section is provided on a surface side of the encapsulating resin section.
摘要:
By using a light emitting device including an insulating substrate and a light emitting unit formed on the insulating substrate, the light emitting unit including: a plurality of linear wiring patterns disposed on the insulating substrate in parallel with one another, a plurality of light emitting elements that are mounted between the wiring patterns while being electrically connected to the wiring patterns, and a sealing member for sealing the light emitting elements, as well as a method for manufacturing thereof, it becomes possible to provide a light emitting device that achieves sufficient electrical insulation and has simple manufacturing processes so that it can be manufactured at a low cost, and a method for manufacturing the same.
摘要:
By using a light emitting device including a substrate and a light emitting unit, the light emitting unit including: a plurality of light emitting elements that are mounted on substrate and electrically connected to external electrodes; a first sealing member layer containing a first fluorescent material, formed to cover light emitting elements; and a second sealing member layer containing a second fluorescent material, formed on first sealing member layer, as well as a method for manufacturing thereof, it becomes possible to provide a light emitting device capable of suppressing color shifts and the like by the fluorescent materials, and of being easily manufactured, as well as a method for manufacturing the same.