摘要:
To use a monolithic silica body in chromatography with a HPLC column or a GC column and to simplify the use thereof as a separation medium, it is intended to provide a method of cladding a main body of a monolithic adsorbent or separating agent with glass so as to protect the outer surface, and to provide a separation medium prepared by the method. To this end, a monolithic silica body alone is formed by molding, and the molding is coated with a glass body; and then the glass body and the monolithic silica body are fused and integrated at the melting temperature of the glass body at an appropriate pressure. The surface of the resulting monolithic silica body clad with glass is strongly protected by the glass, and the homogeneity of the interior of the monolithic silica body is maintained, and thus uniform flow of a sample solution ensures analytical accuracy.
摘要:
To use a monolithic silica body in chromatography with a HPLC column or a GC column and to simplify the use thereof as a separation medium, it is intended to provide a method of cladding a main body of a monolithic adsorbent or separating agent with glass so as to protect the outer surface, and to provide a separation medium prepared by the method. To this end, a monolithic silica body alone is formed by molding, and the molding is coated with a glass body; and then the glass body and the monolithic silica body are fused and integrated at the melting temperature of the glass body at an appropriate pressure. The surface of the resulting monolithic silica body clad with glass is strongly protected by the glass, and the homogeneity of the interior of the monolithic silica body is maintained, and thus uniform flow of a sample solution ensures analytical accuracy.
摘要:
A high-purity fragment is obtained by a simple mechanism and method for separating and purifying a nucleic acid, particularly fragment DNA, extremely efficiently and with a high reproducibility, wherein elution with a high-concentration salt is not performed and necessity of elution and purification is eliminated. This mechanism is a mechanism for purifying a nucleic acid, particularly fragment DNA using a monolith structure formed with glass or silica, specifically, an integral porous body having an open structure with pores that communicate the upper end with the lower end, wherein through-pores corresponding to nucleic acid sizes of 35 bp (mer) to 100 Kbp (mer) are provided.
摘要:
A high-purity fragment is obtained by a simple mechanism and method for separating and purifying a nucleic acid, particularly fragment DNA, extremely efficiently and with a high reproducibility, wherein elution with a high-concentration salt is not performed and necessity of elution and purification is eliminated.This mechanism is a mechanism for purifying a nucleic acid, particularly fragment DNA using a monolith structure formed with glass or silica, specifically, an integral porous body having an open structure with pores that communicate the upper end with the lower end, wherein through-pores corresponding to nucleic acid sizes of 35 bp (mer) to 100 Kbp (mer) are provided.
摘要:
In a gas scavenging unit for gas chromatography analysis of gas generated in a thermal analyzer, the thermal analyser is equipped with a gas scavenging unit for scavenging gas generated in the thermal analyzer without usage of a carrier gas and no influence of a switching valve exists in the case of multi-stage sampling. For scavenging, there can be provided multiple sampling flow paths each have an aperture placed between the sample and the carrier gas outlet of the thermal analyzer, a flow regulator, a flow path switching valve, and a suction unit which is connected to the switching valve. The gas generated in the thermal analyzer is suctioned by the suction unit through a sampling flow path which is changed with the flow path switching valve. The appropriate volume of gas is scavenged to the GC analysis without any influence of the flow (rate) of the carrier gas even when the scavenging is done through switching to multiple scavengers.
摘要:
The present invention provides a monolithic silicone in the form of an aerogel or a xerogel having flexibility and capable of dissolving molecules of a substance. This silicone monolithic body having continuous through passages is synthesized by copolymerizing starting materials of both a bifunctional alkoxysilane and a trifunctional alkoxysilane or tri- or higher functional alkoxysilanes through a sol-gel reaction for forming a Si—O network while causing phase separation.
摘要:
To enable the mass injection of a sample in a gas chromatography and prevent occurrence of residue or decomposition of a desired constituent during analysis. The invention calls for providing the injection port with a liner, connecting the column and the liner to a press-fit, evaporating the solvent introduced into the liner, and discharging the evaporated solvent from a discharge port formed at the upper part of the liner.
摘要:
The present invention provides a monolithic silicone in the form of an aerogel or a xerogel having flexibility and capable of dissolving molecules of a substance. This silicone monolithic body having continuous through passages is synthesized by copolymerizing starting materials of both a bifunctional alkoxysilane and a trifunctional alkoxysilane or tri- or higher functional alkoxysilanes through a sol-gel reaction for forming a Si—O network while causing phase separation.
摘要:
The present invention is directed to a system for pre-treatment of a sample to be introduced in a chromatograph, and a method for performing solid-phase extraction of a component present in a sample. The system uses a syringe having a needle being provided with a porous body having a monolithic structure along at least an appropriate length of the needle and across an overall diameter of the needle. The method includes the steps of inserting the needle into the sample, passing the sample through the needle to retain an analyte within the porous body, and desorbtion of the retained analyte from the porous body.