摘要:
A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
摘要:
A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
摘要:
An interconnect in provided which comprises a copper conductor having both a top surface and a lower surface, with caps formed on the top surface of the metallic conductor. The cap is formed of dual laminations or multiple laminations of films with the laminated films including an Ultra-Violet (UV) blocking film and a diffusion barrier film. The diffusion barrier film and the UV blocking film may be separated by an intermediate film.
摘要:
An interconnect in provided which comprises a copper conductor having both a top surface and a lower surface, with caps formed on the top surface of the metallic conductor. The cap is formed of dual laminations or multiple laminations of films with the laminated films including an Ultra-Violet (UV) blocking film and a diffusion barrier film. The diffusion barrier film and the UV blocking film may be separated by an intermediate film.
摘要:
A dielectric cap, interconnect structure containing the same and related methods are disclosed. The inventive dielectric cap includes a multilayered dielectric material stack wherein at least one layer of the stack has good oxidation resistance, Cu diffusion and/or substantially higher mechanical stability during a post-deposition curing treatment, and including Si—N bonds at the interface of a conductive material such as, for example, Cu. The dielectric cap exhibits a high compressive stress and high modulus and is still remain compressive stress under post-deposition curing treatments for, for example: copper low k back-end-of-line (BEOL) nanoelectronic devices, leading to less film and device cracking and improved reliability.
摘要:
A dielectric cap, interconnect structure containing the same and related methods are disclosed. The inventive dielectric cap includes a multilayered dielectric material stack wherein at least one layer of the stack has good oxidation resistance, Cu diffusion and/or substantially higher mechanical stability during a post-deposition curing treatment, and including Si—N bonds at the interface of a conductive material such as, for example, Cu. The dielectric cap exhibits a high compressive stress and high modulus and is still remain compressive stress under post-deposition curing treatments for, for example: copper low k back-end-of-line (BEOL) nanoelectronic devices, leading to less film and device cracking and improved reliability.
摘要:
A method is described for the repair of process induced damage sustained by low-k organosilicate dielectrics as a result of reactive ion etch, resist strip, wet clean and CMP operations in a hard mask free integration of these dielectrics into microelectronic interconnect structures incorporating a dielectric cap which is an etch stop and barrier layer. In situ reaction of the damaged regions with a suitable silylation agent just prior to a passivation barrier cap deposition is proposed as the most efficacious means to repair all the damage sustained by the dielectric. Variations of this method which include ex situ rather than in situ silylation are also described for use with hard mask free integration with selective barrier caps.
摘要:
A selective conductive cap is deposited on exposed metal surfaces of a metal line by electroless plating selective to exposed underlying dielectric surfaces of a metal interconnect structure. A dielectric material layer is deposited on the selective conductive cap and the exposed underlying dielectric layer without a preclean. The dielectric material layer is planarized to form a horizontal planar surface that is coplanar with a topmost surface of the selective conductive cap. A preclean is performed and a dielectric cap layer is deposited on the selective conductive cap and the planarized surface of the dielectric material layer. Because the interface including a surface damaged by the preclean is vertically offset from the topmost surface of the metal line, electromigration of the metal in the metal line along the interface is reduced or eliminated.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.
摘要:
A method for forming crenulated conductors and a device having crenulated conductors includes forming a hardmask layer on a dielectric layer, and patterning the hardmask layer. Trenches are etched in the dielectric layer using the hardmask layer such that the trenches have shallower portions and deeper portions alternating along a length of the trench. A conductor is deposited in the trenches such that crenulated conductive lines are formed having different depths periodically disposed along the length of the conductive line.