Abstract:
The present invention provides a charged particle beam system which can perform evacuation on an electron gun chamber or an ion-gun chamber having a non-evaporable getter pump in a short time and can maintain the ultra-high vacuum for a long time, and a technology of evacuation therefor. Provided is a charged particle beam system equipped with a charged particle optics which makes the charged particle beam emitted from a charged particle source incident on a sample and means of evacuation for evacuating the charged particle optics, characterized in that the evaporation means has: a vacuum vessel with a charged particle source disposed in the vessel; a non-evaporable getter pump which connects with the vacuum vessel through a vacuum pipe and evacuates the interior of the vacuum vessel as a subsidiary vacuum pump; a valve interposed in the vacuum pipe connecting between the vacuum vessel and the non-evaporable getter pump; a rough pumping port which is provided closer to the non-evaporable getter pump than the valve and performs rough pumping; an open and shut valve for opening and shutting the rough pumping port; and a main vacuum pump which is provided closer to the vacuum vessel than the valve and evacuates the interior of the vacuum vessel.
Abstract:
The present invention provides a charged particle beam system which can perform evacuation on an electron gun chamber or an ion-gun chamber having a non-evaporable getter pump in a short time and can maintain the ultra-high vacuum for a long time, and a technology of evacuation therefor. Provided is a charged particle beam system equipped with a charged particle optics which makes the charged particle beam emitted from a charged particle source incident on a sample and means of evacuation for evacuating the charged particle optics, characterized in that the evaporation means has: a vacuum vessel with a charged particle source disposed in the vessel; a non-evaporable getter pump which connects with the vacuum vessel through a vacuum pipe and evacuates the interior of the vacuum vessel as a subsidiary vacuum pump; a valve interposed in the vacuum pipe connecting between the vacuum vessel and the non-evaporable getter pump; a rough pumping port which is provided closer to the non-evaporable getter pump than the valve and performs rough pumping; an open and shut valve for opening and shutting the rough pumping port; and a main vacuum pump which is provided closer to the vacuum vessel than the valve and evacuates the interior of the vacuum vessel.
Abstract:
An electron gun that serves to reduce the quantity of electron stimulated desorption and accomplishes vacuum evacuation efficiently with a sufficient degree of vacuum. An electron source 1 and an extraction electrode 6 are provided for emitting an electron beam 7 from the electron source 1. A first vacuum chamber 16 containing the electron source 1 is connected to a second vacuum chamber 9 via an aperture 8 provided in the extraction electrode 6. Each vacuum chamber is differentially evacuated with an independent vacuum evacuation means, and the generation of electron stimulated desorption gas 11 is reduced by securing a wide route of vacuum evacuation around the electron source 1 and intercepting the procession of back scattered electrons 12 emitted from the area with the electron beam 7 on the extraction electrode 6 by using a shielding electrode 22 given a prescribed potential.
Abstract:
A small-sized charged particle beam apparatus capable of maintaining high vacuum even during emission of an electron beam is provided. A nonevaporative getter pump is placed upstream of differential pumping of an electron optical system of the charged particle beam apparatus, and a minimum number of ion pumps are placed downstream, so that both the pumps are used in combination. Further, by mounting a detachable coil on an electron gun part, the inside of a column can be maintained under high vacuum with a degree of vacuum in the order of 10−8 Pa.
Abstract:
The present invention provides a compact electron lens causing little aberration, and a charged particle beam apparatus such as a scanning electron microscope that is super compact and offers a high resolution. An upper magnetic pole and a sample-side magnetic pole are magnetically coupled to the respective poles of a permanent magnet that is made of a highly strong magnetic material such as a rare-earth cobalt system or a neodymium-iron-boron system, that is axially symmetrical, and that has a hole in the center thereof. An inner gap is created on the side of a center axis. Thus, a magnetic lens is formed axially. Moreover, a semi-stationary magnetic path that shields an outside magnetic field and has the magnetic reluctance thereof regulated is disposed outside. The sample-side magnetic pole and magnetic path defines a region where magnetic reluctance is the highest outside the permanent magnet. A space defined by the permanent magnet, upper magnetic pole, sample-die magnetic pole, and semi-stationary magnetic path is filled with a filling made of a non-magnetic material. Thus, an objective lens is constructed.
Abstract:
Provided is a charged particle beam apparatus, which can emit a stable electron beam, having high brightness and a narrow energy width. The charged particle beam apparatus comprises a field emission electron source, electrodes for applying an electric field to the field emission electron source, and a vacuum exhaust unit for keeping the pressure around the field emission electron source at 1 10−8 Pa or less. The apparatus is so constituted as to use such one of the electron beams emitted as has an electron-beam-center radiation angle of 1×10−2sr or less, and to use the electric current thereof, the second order differentiation of which is negative or zero with respect to the time, and which reduces at a rate of 10% or less per hour. The charged particle beam apparatus further comprises a heating unit for the field emission electron source, and a detection unit for the electric current of the electron beam. The field emission electron source is repeatedly heated to keep the electric current of the electron beam to be emitted, at a predetermined value or higher.
Abstract:
The present invention provides a charged particle beam apparatus that keeps the degree of vacuum in the vicinity of the electron source to ultra-high vacuum such as 10−8 to 10−9 Pa even in the state where electron beams are emitted using a non-evaporable getter pump and is not affected by dropout foreign particles.The present invention includes a vacuum vessel in which a charged particle source (electron source, ion source, etc.) is disposed and a non-evaporable getter pump disposed at a position that does not directly face electron beams and includes a structure that makes the non-evaporable getter pump upward with respect to a horizontal direction to drop out foreign particles into a bottom in a groove, so that the foreign particles dropped out from the non-evaporable getter pump do not face an electron optical system. Or, the present invention includes a structure that is covered by a shield means, or a means that is disposed immediately on a surface of the non-evaporable getter pump but at a position where the electron beams are not seen and has a concave structure capable of trapping the dropout foreign particles on a lower portion of the non-evaporable getter pump.
Abstract:
There is provided a compact charged particle beam apparatus with a non-evaporable getter pump which maintains high vacuum even during emission of an electron beam without generating foreign particles. The apparatus comprises: a charged particle source; a charged particle optics which focuses a charged particle beam emitted from the charged particle source on a sample and performs scanning; and means of vacuum pumping which evacuates the charged particle optics. The means of vacuum pumping has a differential pumping structure with two or more vacuum chambers connected through an opening in series. A pump made of non-evaporable getter alloy is placed in an upstream vacuum chamber with a high degree of vacuum, and a gas absorbing surface of the non-evaporable getter alloy is fixed without contact with another part.
Abstract:
There is provided a compact charged particle beam apparatus with a non-evaporable getter pump which maintains high vacuum even during emission of an electron beam without generating foreign particles. The apparatus comprises: a charged particle source; a charged particle optics which focuses a charged particle beam emitted from the charged particle source on a sample and performs scanning; and means of vacuum pumping which evacuates the charged particle optics. The means of vacuum pumping has a differential pumping structure with two or more vacuum chambers connected through an opening in series. A pump made of non-evaporable getter alloy is placed in an upstream vacuum chamber with a high degree of vacuum, and a gas absorbing surface of the non-evaporable getter alloy is fixed without contact with another part.
Abstract:
A small-sized charged particle beam apparatus capable of maintaining high vacuum even during emission of an electron beam is provided. A nonevaporative getter pump is placed upstream of differential pumping of an electron optical system of the charged particle beam apparatus, and a minimum number of ion pumps are placed downstream, so that both the pumps are used in combination. Further, by mounting a detachable coil on an electron gun part, the inside of a column can be maintained under high vacuum with a degree of vacuum in the order of 10−8 Pa.