摘要:
A method for operating a semiconductor device including a lateral double diffused metal oxide semiconductor (LDMOS) with a first source, a common drain and a first gate, a junction field effect transistor (JFET) with a second source, the common drain and a second gate wherein the second source is electrically connected to the first gate and an inner circuit electrically connected to the first source is provided. The first source provides the inner circuit with an inner current to generate an inner voltage by means of the lateral double diffused metal oxide semiconductor, and the lateral double diffused metal oxide semiconductor turns off when the inner voltage is elevated substantially as high as the first gate voltage.
摘要:
A semiconductor device includes a lateral double diffused metal oxide semiconductor (LDMOS) , a junction field effect transistor (JFET) and an inner circuit. The lateral double diffused metal oxide semiconductor includes a first source, a common drain and a first gate. The junction field effect transistor includes a second source, the common drain and a second gate. The second source is electrically connected to the first gate. The inner circuit is electrically connected to the first source.
摘要:
A method for operating a semiconductor device including a lateral double diffused metal oxide semiconductor (LDMOS) with a first source, a common drain and a first gate, a junction field effect transistor (JFET) with a second source, the common drain and a second gate wherein the second source is electrically connected to the first gate and an inner circuit electrically connected to the first source is provided. The first source provides the inner circuit with an inner current to generate an inner voltage by means of the lateral double diffused metal oxide semiconductor, and the lateral double diffused metal oxide semiconductor turns off when the inner voltage is elevated substantially as high as the first gate voltage.
摘要:
A semiconductor device includes a lateral double diffused metal oxide semiconductor (LDMOS) , a junction field effect transistor (JFET) and an inner circuit. The lateral double diffused metal oxide semiconductor includes a first source, a common drain and a first gate. The junction field effect transistor includes a second source, the common drain and a second gate. The second source is electrically connected to the first gate. The inner circuit is electrically connected to the first source.
摘要:
A high-voltage transistor device has a substrate, an isolation structure, a source, a gate, a drain, a plurality of doped regions, a plurality of ion wells, and a first dielectric layer disposed on the substrate. The high-voltage transistor device further has a first conductive layer and a plurality of first field plate rings. The first conductive layer is electrically connected to the drain and at least one of the first field plate rings.
摘要:
A high voltage semiconductor device includes a substrate, an insulating layer positioned on the substrate, and a silicon layer positioned on the insulating layer. The silicon layer further includes at least a first doped strip, two terminal doped regions formed respectively at two opposite ends of the silicon layer and electrically connected to the first doped strip, and a plurality of second doped strips. The first doped strip and the terminal doped regions include a first conductivity type, the second doped strips include a second conductivity type, and the first conductivity type and the second conductivity type are complementary. The first doped strip and the second doped strips are alternately arranged.
摘要:
A high voltage semiconductor device includes a substrate, an insulating layer positioned on the substrate, and a silicon layer positioned on the insulating layer. The silicon layer further includes at least a first doped strip, two terminal doped regions formed respectively at two opposite ends of the silicon layer and electrically connected to the first doped strip, and a plurality of second doped strips. The first doped strip and the terminal doped regions include a first conductivity type, the second doped strips include a second conductivity type, and the first conductivity type and the second conductivity type are complementary. The first doped strip and the second doped strips are alternately arranged.
摘要:
A high-voltage transistor device has a substrate, an isolation structure, a source, a gate, a drain, a plurality of doped regions, a plurality of ion wells, and a first dielectric layer disposed on the substrate. The high-voltage transistor device further has a first conductive layer and a plurality of first field plate rings. The first conductive layer is electrically connected to the drain and at least one of the first field plate rings.
摘要:
The present invention provides a high voltage metal-oxide-semiconductor transistor device including a substrate, a deep well, and a doped region. The substrate and the doped region have a first conductive type, and the substrate has at least one electric field concentration region. The deep well has a second conductive type different from the first conductive type. The deep well is disposed in the substrate, and the doped region is disposed in the deep well. The doping concentrations of the doped region and the deep well in the electric field have a first ratio, and the doping concentrations of the doped region and the deep well outside the electric field have a second ratio. The first ratio is greater than the second ratio.
摘要:
The present invention provides a semiconductor device including a substrate, a deep well, a high-voltage well, and a doped region. The substrate and the high-voltage well have a first conductive type, and the deep well and the doped region have a second conductive type different from the first conductive type. The substrate has a high-voltage region and a low-voltage region, and the deep well is disposed in the substrate in the high-voltage region. The high-voltage well is disposed in the substrate between the high-voltage region and the low-voltage region, and the doped region is disposed in the high-voltage well. The doped region and the high-voltage well are electrically connected to a ground.