摘要:
A semiconductor device of this invention includes a silicon nitride film formed on a semiconductor substrate and having a density of 2.2 g/cm3 or less, and a silicon oxide film formed on the silicon nitride film in an ambient atmosphere containing TEOS and O3.
摘要翻译:本发明的半导体器件包括在半导体衬底上形成的密度为2.2g / cm 3以下的氮化硅膜和在环境中形成在氮化硅膜上的氧化硅膜 含有TEOS和O 3 3的气氛。
摘要:
A semiconductor device of this invention includes a silicon nitride film formed on a semiconductor substrate and having a density of 2.2 g/cm3 or less, and a silicon oxide film formed on the silicon nitride film in an ambient atmosphere containing TEOS and O3.
摘要翻译:本发明的半导体器件包括在半导体衬底上形成的密度为2.2g / cm 3以下的氮化硅膜和在含有TEOS和O 3的环境气氛中形成在氮化硅膜上的氧化硅膜 。
摘要:
A semiconductor device of this invention includes a silicon nitride film formed on a semiconductor substrate and having a density of 2.2 g/cm3 or less, and a silicon oxide film formed on the silicon nitride film in an ambient atmosphere containing TEOS and O3.
摘要翻译:本发明的半导体器件包括在半导体衬底上形成的密度为2.2g / cm 3以下的氮化硅膜和在含有TEOS和O 3的环境气氛中形成在氮化硅膜上的氧化硅膜 。
摘要:
A system for determining dry cleaning timing, includes: a manufacturing apparatus configured to process materials assigned by a sequence of lots; an apparatus controller configured to control the manufacturing apparatus and obtaining operational conditions of the manufacturing apparatus as apparatus information; a lot information input terminal configured to obtain process conditions of one of the lots as lot information; an apparatus information storage unit configured to store the apparatus information from the apparatus controller as an apparatus information database; a lot information storage unit configured to store the lot information from the lot information input terminal as a lot information database; and a cleaning determination unit configured to determine timing to perform a dry cleaning of the manufacturing apparatus based on the apparatus information database and the lot information database.
摘要:
A semiconductor wafer having an impurity diffusion layer formed in an inner surface of a trench is cleaned. The semiconductor wafer is inserted into a furnace, and NH3 gas is introduced into the furnace in the low-pressure condition to create an atmosphere in which the temperature is set at 800° C. to 1200° C. and the partial pressures of H2O and O2 are set at 1×10−4 Torr or less. A natural oxide film formed on the inner surface of the trench is removed, and substantially at the same time, a thermal nitride film is formed on the impurity diffusion layer. Then, a CVD silicon nitride film is formed on the thermal nitride film without exposing the thermal nitride film to the outside air in the same furnace. Next, a silicon oxide film is formed on the CVD nitride film. As a result, a composite insulative film formed of the thermal nitride film, CVD silicon nitride film and silicon oxide film is obtained. Then, an electrode for the composite insulative film is formed in the trench.
摘要:
A semiconductor wafer having an impurity diffusion layer formed in an inner surface of a trench is cleaned. The semiconductor wafer is inserted into a furnace, and NH.sub.3 gas is introduced into the furnace in the low-pressure condition to create an atmosphere in which the temperature is set at 800.degree. C. to 1200.degree. C. and the partial pressures of H.sub.2 O and O.sub.2 are set at 1.times.10.sup.-4 Torr or less. A natural oxide film formed on the inner surface of the trench is removed, and substantially at the same time, a thermal nitride film is formed on the impurity diffusion layer. Then, a CVD silicon nitride film is formed on the thermal nitride film without exposing the thermal nitride film to the outside air in the same furnace. Next, a silicon oxide film is formed on the CVD nitride film. As a result, a composite insulative film formed of the thermal nitride film, CVD silicon nitride film and silicon oxide film is obtained. Then, an electrode for the composite insulative film is formed in the trench.
摘要:
According to one embodiment, a method is disclosed for manufacturing a semiconductor device. A side face parallel to a channel direction of a plurality of gate electrodes provided via a gate insulating film above a semiconductor substrate is included as a part of an inner wall of an isolation groove provided between the adjacent gate electrodes. The method can include forming a protection film covering the side face of the gate electrode. The method can include etching the semiconductor substrate using the gate electrode as a mask to form the isolation groove. The side face of the gate electrode is covered with the protection film. The method can include forming a first insulating film by oxidizing a surface of the isolation groove to fill a bottom portion of the isolation groove. In addition, the method can include forming a second insulating film on the first insulating film to fill an upper portion of the isolation groove including the side face of the gate electrode.
摘要:
A nonvolatile semiconductor memory has a semiconductor substrate, a first insulating film formed on a channel region on a surface portion of the semiconductor substrate, a charge accumulating layer formed on the first insulating film, a second insulating film formed on the charge accumulating layer, a control gate electrode formed on the second insulating film, and a third insulating film including an Si—N bond that is formed on a bottom surface and side surfaces of the charge accumulating layer.
摘要:
A nonvolatile semiconductor memory device includes an array of nonvolatile memory cell transistors, each of which is configured such that a tunnel insulation film, a floating gate electrode, a floating gate insulation film and a control gate electrode are stacked on a surface of a semiconductor substrate. A mean roughness of an interface between a polysilicon, of which the floating gate electrode is formed, and the floating gate insulation film is 1.5 nm or less.
摘要:
A manufacturing method of a nonvolatile semiconductor memory device including: providing a first insulating film and a silicon film on a semiconductor substrate; providing a fifth insulating film containing silicon and oxygen on the silicon film; providing a second insulating film containing silicon and nitrogen on the fifth insulating film; providing a third insulating film on the second insulating film, the third insulating film is composed of a single-layer insulating film containing oxygen or multiple-layer stacked insulating film at least whose films on a top layer and a bottom layer contain oxygen, and relative dielectric constant of the single-layer insulating film and the stacked insulating film being larger than relative dielectric constant of a silicon oxide film; providing a fourth insulating film containing silicon and nitrogen on the third insulating film; and providing a control gate above the fourth insulating film.