Abstract:
A method for adding a low TCR resistor to a baseline CMOS manufacturing flow. A method of forming a low TCR resistor in a CMOS manufacturing flow. A method of forming an n-type and a p-type transistor with a low TCR resistor in a CMOS manufacturing flow.
Abstract:
An integrated circuit containing a metal gate transistor and a thin polysilicon resistor may be formed by forming a first layer of polysilicon and removed it in an area for the thin polysilicon resistor. A second layer of polysilicon is formed over the first layer of polysilicon and in the area for the thin polysilicon resistor. The thin polysilicon resistor is formed in the second layer of polysilicon and the sacrificial gate is formed in the first layer of polysilicon and the second layer of polysilicon. A PMD layer is formed over the second layer of polysilicon and a top portion of the PMD layer is removed so as to expose the sacrificial gate but not expose the second layer of polysilicon in the thin polysilicon resistor. The sacrificial gate is removed and a metal replacement gate is formed.
Abstract:
Elongated metal contacts with longitudinal axes that lie in a first direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie in the first direction, and elongated metal contacts with longitudinal axes that lie a second direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie the second direction, where the second direction lies orthogonal to the first direction.
Abstract:
Elongated metal contacts with longitudinal axes that lie in a first direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie in the first direction, and elongated metal contacts with longitudinal axes that lie a second direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie the second direction, where the second direction lies orthogonal to the first direction.
Abstract:
Elongated metal contacts with longitudinal axes that lie in a first direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie in the first direction, and elongated metal contacts with longitudinal axes that lie a second direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie the second direction, where the second direction lies orthogonal to the first direction.
Abstract:
Integrated circuits and manufacturing methods are presented for creating diffusion resistors (101, 103) in which the diffusion resistor well is spaced from oppositely doped wells to mitigate diffusion resistor well depletion under high biasing so as to provide reduced voltage coefficient of resistivity and increased breakdown voltage for high-voltage applications.
Abstract:
Elongated metal contacts with longitudinal axes that lie in a first direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie in the first direction, and elongated metal contacts with longitudinal axes that lie a second direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie the second direction, where the second direction lies orthogonal to the first direction.
Abstract:
An integrated circuit containing a metal gate transistor and a thin polysilicon resistor may be formed by forming a first layer of polysilicon and removed it in an area for the thin polysilicon resistor. A second layer of polysilicon is formed over the first layer of polysilicon and in the area for the thin polysilicon resistor. The thin polysilicon resistor is formed in the second layer of polysilicon and the sacrificial gate is formed in the first layer of polysilicon and the second layer of polysilicon. A PMD layer is formed over the second layer of polysilicon and a top portion of the PMD layer is removed so as to expose the sacrificial gate but not expose the second layer of polysilicon in the thin polysilicon resistor. The sacrificial gate is removed and a metal replacement gate is formed.
Abstract:
An integrated circuit with a LV transistor and a high performance asymmetric transistor. A power amplifier integrated circuit with a core transistor and a high performance asymmetric transistor. A method of forming an integrated circuit with a core transistor and a high performance asymmetric transistor. A method of forming a power amplifier integrated circuit with an nmos core transistor and an nmos high performance asymmetric transistor, a resistor, and an inductor.