Abstract:
A hydrophobic-icephobic composition includes a monomer binder, an organic solvent, and a hydrolyzed organosilane. The hydrolyzed organosilane is represented by a formula of R1—Si—(OH)3. The R1 group comprises an alkyl or a haloalkyl having from 3 to 40 carbons. A hydrophobic-icephobic coating over a substrate includes a polymer base and a polyorganosiloxane. The polyorganosiloxane includes —(R1—Si—O2)- units. The R1 group includes an alkyl or a haloalkyl having from 3 to 40 carbons. One or more of the —(R1—Si—O2)- units of the polyorganosiloxane are may be chemically bonded to the substrate.
Abstract:
A method of treating a contoured surface with surface treatment layer includes applying a surface preparation layer along the contoured surface and applying a basecoat layer on top of the surface preparation layer. The method further includes stabilizing the basecoat layer to prepare a basecoat surface along the basecoat layer for one or more subsequent layers of the surface treatment coating and jetting a decorative livery layer along the contoured surface using one or more ink jet print heads. The method further includes applying an adhesion promoter on top of the decorative livery layer and stabilizing the adhesion promoter layer to produce a desired bonding surface along the adhesion promoter layer. Additionally, the method includes applying a clear coat layer to cover the underlying decorative livery layer, the basecoat layer and the surface preparation layer.
Abstract:
A hybrid coating composition including an organosilane component, a metal alkoxide component and a surfactant component, with the metal alkoxide component present in the composition at a molar ratio of about 75:1 with respect to the surfactant component. The hybrid coating composition once cured on a transparent substrate has an initial clarity greater than 98. Transparent members are also disclosed that include a transparent substrate having the hybrid coating composition cured on a first major surface thereof.
Abstract:
A coating includes at least one coating layer containing first particles, second particles, and third particles distributed throughout a cross-linked, continuous polymer matrix. An outer surface of the coating layer includes surfaces of at least first particles extending outward from a top periphery of the polymer matrix. The outer surface exhibits a property of delaying ice formation compared to the coating layer without the first particles. A method includes applying a coating composition in one application step. The one-step coating composition contains first particles, second particles, and third particles in a base containing a polymer. A coating composition includes first particles, second particles, and third particles distributed in a matrix precursor.
Abstract:
A hybrid coating composition including an organosilane component, a metal alkoxide component and a surfactant component, with the metal alkoxide component present in the composition at a molar ratio of about 75:1 with respect to the surfactant component. The hybrid coating composition once cured on a transparent substrate has an initial clarity greater than 98. Transparent members are also disclosed that include a transparent substrate having the hybrid coating composition cured on a first major surface thereof.
Abstract:
In certain aspects, a composition includes a monomer binder, a plurality of silica nanoparticles, a surface energy reducing additive, and a blend of a high polarity solvent and a low polarity solvent. The high polarity solvent has a dipole moment of about 1.2 or greater, and the low polarity solvent has a dipole moment of about 0.7 or less. In certain aspects, a coated substrate includes a substrate and a coating over the substrate. The substrate is selected from a group consisting of glass, polycarbonate, polyacrylate, and polyethylene terepthalate. The coating includes a polymer binder, a plurality of nanoparticles, and a surface energy reducing additive. The coated substrate has a transparency of at least about 80% light transmission at one or more wavelengths in a range of 380 nm to 740 nm.
Abstract:
A coating includes at least one coating layer containing first particles, second particles, and third particles distributed throughout a cross-linked, continuous polymer matrix. An outer surface of the coating layer includes surfaces of at least first particles extending outward from a top periphery of the polymer matrix. The outer surface exhibits a property of delaying ice formation compared to the coating layer without the first particles. A method includes applying a coating composition in one application step. The one-step coating composition contains first particles, second particles, and third particles in a base containing a polymer. A coating composition includes first particles, second particles, and third particles distributed in a matrix precursor.
Abstract:
A coating includes at least one coating layer containing first particles, second particles, and third particles distributed throughout a cross-linked, continuous polymer matrix. An outer surface of the coating layer includes surfaces of at least first particles extending outward from a top periphery of the polymer matrix. The outer surface exhibits a property of delaying ice formation compared to the coating layer without the first particles. A method includes applying a coating composition in one application step. The one-step coating composition contains first particles, second particles, and third particles in a base containing a polymer. A coating composition includes first particles, second particles, and third particles distributed in a matrix precursor.