Abstract:
An artificial cornea is fabricated by separately culturing live stromal cells, live corneal endothelial cells (CECs) and live corneal epithelial cells (CEpCs), and 3D bioprinting separate stromal, CEC and CEpC layers to encapsulate the cells into separate hydrogel nanomeshes. The CEC layer is attached to a first side of the stromal layer and the CEpC layer to a second side of the stromal layer to define the artificial cornea.
Abstract:
A method and system for microscale 3D printing achieve high-fidelity fabrication through the control of the light exposure time. A single pulse of light is used to initiate polymerization of a pre-polymer solution to minimize scattering-induced resolution deterioration. The printed object is fabricated in a layer-by-layer construction where each layer is formed through exposure to a single light pulse.
Abstract:
A device for in vivo 3D bioprinting includes an elongated hollow tube configured that can be inserted into a living body. A feed tube within the hollow tube conveys a liquid polymerizable biomaterial to an extrusion nozzle positioned at the target site. A light guide within the hollow tube conducts polymerizing light from a light source to polymerize the biomaterial that has been extruded at the target site. Arthroscopic procedures employing the device enable in vivo attachment of tissue to bone or other tissue, or replacement of loss tissue or bone volume.
Abstract:
A system and method for 3D microfabrication projects light capable of initiating photopolymerization toward a spatial light modulator that modulates light responsive to digital masks corresponding to layers of the structure. Projection optics focus the modulated light onto an optical plane within a photopolymerizable material supported on a stage. A computer controller causes the spatial light modulator to project a sequence of images corresponding to the digital masks while coordinating movement of the stage to move a position of the optical plane within the photopolymerizable material to sequentially project each image of the sequence to generate the structure by progressively photopolymerizing the photopolymerizable material.
Abstract:
An artificial structure for promoting microalgae growth includes a 3D-printed structure formed by positioning a printing surface on a movable stage of a 3D bioprinter in contact with a bio-ink that includes a mixture of a pre-polymer material with one or more of cellulose-derived nanocrystals (CNC), and microalgae cells. By projecting modulated light onto the printing surface while moving the stage, the bio-ink is progressively polymerized to define layers of an artificial coral structure with microalgae cells disposed thereon, where the artificial coral structure is configured to scatter light within the structure.
Abstract:
Using 3D printing, a microwell is formed by providing a plurality of masks, each mask representing a cross-section of a layer of the concave structure. Progressive movement of a projection plane exposes a pre-polymer solution to polymerizing radiation modulated by the masks to define the layers of the microwell, where each layer is exposed for a non-equal exposure period as determined by a non-linear factor. In a preferred embodiment, a first portion of the masks are base layer masks, which are exposed for a longer period than subsequent exposure periods. Shapes of the microwells, which may include circular, square, annular, or other geometric shapes, and their depths, are selected to promote aggregation behavior in the target cells, which may include tumor cells and stem cells.
Abstract:
A liver-mimetic device and method include a 3D polymer scaffold having a matrix of liver-like lobules with hepatic-functioning particles encapsulated within the lobules. In some embodiments, each liver-like lobule is hexagonal in structure and the matrix is in a honeycomb arrangement. In some embodiments, the hepatic-functioning particles are hepatic progenitor cells. In other embodiments, the hepatic-functioning particles are polymer nanoparticles adapted to capture pore-forming toxins.