摘要:
A protection circuit for a CMOS integrated circuit which is biased with a first voltage and a second voltage includes a voltage divider, a voltage comparator, and a switch. The full level of the first voltage is higher than that of the second voltage. The voltage divider divides the first voltage to be compared with the second voltage in the voltage comparator. The switch is controlled by the voltage comparator. The switch isolates the CMOS integrated circuit from the first voltage when the first voltage is lower than the second voltage. Therefore, no forward bias current path exists in the CMOS integrated circuit even though the voltage levels of the first and second voltages reach their full levels at different times.
摘要:
An electrostatic discharge protection circuit formed in a semiconductor substrate includes a vertical bipolar junction transistor having a base which is grounded, an emitter connected to an output/input bonding pad of an integrated circuit, and a collector connected to a high power source via a resistor. The resistor is a parasitic resistor created by controlling the distance between the diffusion regions or the distance between a p-type well region and an n-type well region or formed by a lightly doped diffusion region in the semiconductor substrate to prevent current crowding and increase electrostatic protection.
摘要:
A system and method for controlling an input/output driver. The system includes a control system configured to receive a first supply voltage and a second supply voltage and generate a control signal, and a first transistor including a first gate, a first terminal, and a second terminal. The first gate is configured to receive the control signal, and the first terminal is configured to receive the first supply voltage. Additionally, the system includes a second transistor including a second gate, a third terminal, and a fourth terminal, and the second gate is coupled to the second terminal. Moreover, the system includes a third transistor including a third gate, a fifth terminal, and a sixth terminal, and the third gate is configured to receive the control signal. Also, the system includes an input/output pad coupled to the fourth terminal and the fifth terminal.
摘要:
A novel device structure and process are described for an SCR ESD protection device used with shallow trench isolation structures. The invention incorporates polysilicon gates bridging SCR diode junction elements and also bridging between SCR elements and neighboring STI structures. The presence of the strategically located polysilicon gates effectively counters the detrimental effects of non-planar STI “pull down” regions as well as compensating for the interaction of silicide structures and the effective junction depth of diode elements bounded by STI elements. Connecting the gates to appropriate voltage sources such as the SCR anode input voltage and the SCR cathode voltage, typically ground, reduces normal operation leakage of the ESD protection device.
摘要:
A method for forming an electrical metal fuse for use with a semiconductor integrated circuit device. At least two varying trench metal depths may be formed on a substrate to configure the electrical metal fuse thereon. Additionally, at least two different widths of single metal lines, may be configured on the substrate. As a result of the two different trench depths and two different widths of metal formed thereon to create the electrical metal fuse, increases in current density gradients and thermal gradients thereof can be generated. The trench metal depths and width of metal are formed from copper. The electrical metal fuse generally comprises a current density ratio greater than 10 to 1.
摘要:
The present invention provides an ESD protection circuit having at least one semiconductor-controlled rectifier and a diode. The SCR having a floating anode gate is connected between a first circuit node a second circuit node. The diode is connected between an anode and a cathode gate of the SCR to activate the SCR so that a potential between the first circuit node and second circuit node can be clamped at about a holding voltage of the SCR during an ESD event.
摘要:
An integrated circuit package includes a semiconductor chip, a plurality of wired pins, and at least one non-wired pin. The size of the non-wired pin is minimized, or the non-wired pin is eliminated, in order to increase the lead pin spacing. The increase in lead pin spacing prevents electrostatic discharge failure in an integrated circuit package due to electrostatic stressing of the non-wired pin.
摘要:
A diode structure compatible with silicide processes for electrostatic discharge protection is disclosed. The diode structure comprises a semiconductor layer of a first conductivity type, a diffusion region of a second conductivity type formed in the semiconductor layer, and a doped region of the second conductivity type formed in the semiconductor layer around the diffusion region. The doped region has a doping concentration less than that of the diffusion region to provide a ballastic resistance under a high current stressing condition.
摘要:
An ESD protection circuit is fabricated on a semiconductor block on an insulating layer overlying a supporting substrate. The ESD protection circuit comprises a first N-type doped region, a first P-type doped region, a second N-type doped region and a second P-type doped region sequentially formed in the semiconductor block, and a stacked structure overlying the first P-type doped region and the second N-type doped region, wherein the first N-type doped region is more heavily doped than the second N-type doped region and the first P-type doped region is more lightly doped than the second P-type doped region.
摘要:
In a multiple-supply CMOS IC, if VDDH is applied slower than VDDL during powering up, some diffusion junctions normally reversed-biased may momentarily become forward-biased and produce latch-up to produce permanent damage to circuits. Therefore a protection circuit against latch-up in a multiple-supply IC is provided. The protection circuit comprises an N-channel MOSFET, which has its gate connected to the high-voltage bus, its drain connected to the low-voltage supply, and its source connected to the low-voltage bus to control the power-up sequence of high voltage and low voltage for the multiple-supply IC and to prevent latch-up. The N-channel MOSFET can be of different modes, such as enhancement mode, depletion mode or enhancement mode having a low threshold voltage.