Abstract:
An electrical node includes a substrate for accommodating a functional element. The substrate includes a first side and an opposite second side, and hosting a number of connecting elements. The functional element includes an electronic component and conductive traces. The electrical node also includes a first material layer defining a protective covering. The first material layer defining at least a portion of the exterior surface of the nod arranged to reduce at least thermal expansion and/or mechanical deformation related stresses between one or more elements included in the node, adjacent the node and/or at least at a proximity thereto.
Abstract:
An electrical node includes a substrate for accommodating a functional element. The substrate includes a first side and an opposite second side, and hosting a number of connecting elements. The functional element includes an electronic component and conductive traces. The electrical node also includes a first material layer defining a protective covering. The first material layer defining at least a portion of the exterior surface of the nod arranged to reduce at least thermal expansion and/or mechanical deformation related stresses between one or more elements included in the node, adjacent the node and/or at least at a proximity thereto.
Abstract:
A method for manufacturing an electronic product, comprising providing a flexible, optionally optically substantially transparent or translucent, substrate film, printing a number of conductive traces of conductive ink on the substrate film, said traces defining a number of conductors and conductive contact areas for the contacts of at least one electronic surface-mountable component, disposing the at least one electronic surface-mountable component, such as an integrated circuit, on the substrate film so that the contacts meet the predefined contact areas when they are still wet to establish the electrical connection therebetween, and further securing, optionally overmoulding, the component. Related arrangement and electronic product are presented.
Abstract:
A multilayer structure, includes a flexible substrate film having a first side and opposite second side, a number of conductive traces, optionally defining contact pads and/or conductors, preferably printed on the first side for establishing a desired predetermined circuit design, plastic layer molded onto the first side so as to enclose the circuit between the plastic layer and the first side, and a preferably flexible connector for providing external electrical connection to the embedded circuit on the first side from the second, opposite side, one end of the connector being attached to a predetermined contact area on the first side, the other end being located on the second side for coupling with an external element, the intermediate portion connecting the two ends being fed through an opening in the substrate, wherein the opening extending through the thickness of the film is dimensioned to accommodate the connector without substantial additional clearance.
Abstract:
An integrated multilayer assembly for an electronic device includes a first substrate film configured to accommodate electrical features on at least first side thereof, said first substrate film having the first side and a substantially opposing second side, a second substrate film configured to accommodate electrical features on at least first side thereof, said second substrate film having the first side and a substantially opposing second side, the first sides of the first and second substrate films being configured to face each other, at least one electrical feature on the first side of the first substrate film, at least one other electrical feature on the first side of the second substrate film, and a molded plastic layer between the first and second substrate films at least partially embedding the electrical features on the first sides thereof.
Abstract:
A multilayer structure includes a flexible substrate film having a first side and opposite second side, a number of conductive traces, optionally defining contact pads and/or conductors, printed on the first side for establishing a desired predetermined circuit design, a plastic layer molded onto the first side so as to enclose the circuit between the plastic layer and the first side, and a connector in a form of a flexible flap for providing external electrical connection to the embedded circuit from the second, opposite side, the connector defined by a portion of the substrate film accommodating at least part of one or more of the printed conductive traces and cut partially loose from the surrounding substrate material to establish the flap, whose loose end is bendable away from the molded plastic layer to facilitate establishment of the electrical connection with external element, wire or connector, via the associated gap.
Abstract:
A method for manufacturing an electronic product, comprising providing a flexible, optionally optically substantially transparent or translucent, substrate film, printing a number of conductive traces of conductive ink on the substrate film, said traces defining a number of conductors and conductive contact areas for the contacts of at least one electronic surface-mountable component, disposing the at least one electronic surface-mountable component, such as an integrated circuit, on the substrate film so that the contacts meet the predefined contact areas when they are still wet to establish the electrical connection therebetween, and further securing, optionally overmoulding, the component. Related arrangement and electronic product are presented.