摘要:
In a damping force control type hydraulic shock absorber, the flow path area of a port is changed by moving a spool according to an electric current supplied to an actuator, and thus the flow path area of a passage between cylinder upper and lower chambers is directly changed, thereby controlling orifice characteristics. Moreover, the pressure in a pilot chamber is changed according to the resulting pressure loss so as to change the valve opening pressure of a disk valve, thereby controlling valve characteristics. This enables the damping force characteristic control range to be widened. The pilot chamber is formed by the side wall of a valve member, the disk valve, a seal disk, and a seal member, also, the seal member has no sliding portion. It is therefore possible to minimize the leakage of hydraulic fluid and to obtain stable damping force characteristics. It is also possible to minimize variations in damping force with temperature changes.
摘要:
A damping force control type hydraulic shock absorber of the present invention includes a cylindrical valve member. One end of the cylinder valve member is closed. Also, the shock absorber includes annular inner and outer seal portions, and a valve seat provided there-between, all of which project from an inner wall of a bottom portion of the valve member and are concentric with one another. A disk valve is secured at an inner peripheral portion thereof to the inner seal portion and abuts at an outer peripheral portion thereof on the valve seat. A retainer disk stacks on the disk valve. An annular seal ring abuts at an inner peripheral portion thereof of an outer peripheral edge portion of the retainer disk, and is secured at an outer peripheral portion thereof to the outer seal portion. A blocking member is connected to an open end of the valve member so that a pilot chamber is formed by the retainer disk, the seal ring and the blocking member.
摘要:
A semiconductor device according to the present invention includes a thin-film transistor and a thin-film diode. The respective semiconductor layers and of the thin-film transistor and the thin-film diode are crystalline semiconductor layers that have been formed by crystallizing the same crystalline semiconductor film. Ridges have been formed on the surface of the semiconductor layer of the thin-film diode. And the semiconductor layer of the thin-film diode has a greater surface roughness than the semiconductor layer of the thin-film transistor.
摘要:
A semiconductor device includes a thin film transistor and a thin film diode on a same substrate. A semiconductor layer (109) of the thin film transistor and a semiconductor layer (110) of the thin film diode are crystalline semiconductor layers formed by crystallizing the same non-crystalline semiconductor film. The thickness of the semiconductor layer (110) of the thin film diode is greater than the thickness of the semiconductor layer (109) of the thin film transistor, and the surface of the semiconductor layer (110) of the thin film diode is rougher than the surface of the semiconductor layer (109) of the thin film transistor.
摘要:
A semiconductor device includes a thin film transistor and a thin film diode on a same substrate. A semiconductor layer (109) of the thin film transistor and a semiconductor layer (110) of the thin film diode are crystalline semiconductor layers formed by crystallizing the same non-crystalline semiconductor film. The thickness of the semiconductor layer (110) of the thin film diode is greater than the thickness of the semiconductor layer (109) of the thin film transistor, and the surface of the semiconductor layer (110) of the thin film diode is rougher than the surface of the semiconductor layer (109) of the thin film transistor.
摘要:
A semiconductor device includes at least one thin-film transistor 116, which includes: a crystalline semiconductor layer 120 including a region 110 to be a channel region and source and drain regions 113; a gate electrode 107 for controlling the conductivity of the region 110 to be a channel region; a gate insulating film 106 arranged between the semiconductor layer 120 and the gate electrode 107; and source and drain electrodes 115 connected to the source and drain regions 113, respectively. At least one of the source and drain regions 113 contains an element to be a donor or an acceptor and a rare-gas element, but the region 110 to be a channel region does not contain the rare-gas element. The atomic weight of the rare-gas element is greater than that of the element to be a donor or an acceptor. The concentration of the rare-gas element in the at least one region as measured in the thickness direction thereof decreases continuously from the upper surface of the at least one region toward its lower surface.
摘要:
A semiconductor device includes at least one thin-film transistor, which includes a semiconductor layer, a gate electrode and a gate insulating film. In the semiconductor layer, a crystalline region, including a channel forming region, a source region and a drain region, is defined. The gate electrode is provided to control the conductivity of the channel forming region. The gate insulating film is provided between the gate electrode and the semiconductor layer. The semiconductor layer includes a gettering region outside of the crystalline region thereof.
摘要:
A semiconductor device includes a thin film transistor including a semiconductor layer that includes a channel region, a source region and a drain region, a gate insulating film provided on the semiconductor layer, and a gate electrode for controlling the conductivity of the channel region, wherein the surface of the semiconductor layer includes a minute protruding portion, and the side surface inclination angle of the gate electrode is larger than the inclination angle of the protruding portion of the semiconductor layer.
摘要:
A method of the present invention includes the steps of forming an amorphous semiconductor layer on an insulative surface, adding a catalyst element capable of promoting crystallization to the amorphous semiconductor layer and then performing a first heat treatment so as to crystallize the amorphous semiconductor layer, thereby obtaining a crystalline semiconductor layer, performing a first gettering process to remove the catalyst element from the semiconductor layer, and performing a second gettering process that is different from the first gettering process to remove the catalyst element from the semiconductor layer. The first gettering process includes removing at least large masses of a semiconductor compound of the catalyst element present in the crystalline semiconductor layer. The second gettering process includes moving at least a portion of the catalyst element remaining in the crystalline semiconductor layer so as to form a low-catalyst-concentration region in the crystalline semiconductor layer, the low-catalyst-concentration region having a lower catalyst element concentration than in other regions.
摘要:
The thin film transistor of this invention is formed on a substrate and includes an active layer and a first insulating film and a second insulating film sandwiching the active layer, wherein the overall polarity of fixed charges contained in the first insulating film is the reverse of the overall polarity of fixed charges contained in the second insulating film.