摘要:
A method of producing a semiconductor device such as a semiconductor laser having a controllably disordered superlattice. The superlattice is grown epitaxially and in the same epitaxial growth process a heavily selenium doped semiconductor layer is also grown in a known spatial relationship to the superlattice. The doped layer is patterned as by etching and then the device is annealed to diffuse selenium impurities from the doped layer. The time and temperature of annealing are controlled such that the impurities diffuse into and thereby disorder regions of the superlattice layer, leaving a nondisordered region which can serve as a resonator in a laser.
摘要:
A method of producing a semiconductor device such as a semiconductor laser having a controllably disordered superlattice. The superlattice is grown epitaxially and in the same epitaxial growth process a heavily selenium doped semiconductor layer is also grown in a known spatial relationship to the superlattice. The doped layer is patterned as by etching and then the device is annealed to diffuse selenium impurities from the doped layer. The time and temperature of annealing are controlled such that the impurities diffuse into and thereby disorder regions of the superlattice layer, leaving a non-disordered region which can serve as a resonator in a laser.
摘要:
In a method of producing a solar cell, a photovoltaic thin semiconductor crystalline film is formed on an underlying substrate and hydrogen passivated throughout the film thickness direction of the photovoltaic film whereby a high efficiency solar cell is obtained. In addition, since the passivation process is performed before forming a rear surface electrode on the thin semiconductor crystalline film, the passivation process is not limited by the rear surface electrode. Thereby, a solar cell having a higher energy conversion efficiency is obtained. The passivation process is performed by exposing the thin semiconductor crystalline film to a hydrogen ion ambient having a low acceleration energy, below 2 KeV, or to a plasma ambient. Therefore, the uniformity of the passivation process at a wafer surface is improved and a large area wafer can be efficient processed. Furthermore, the passivation process can be performed to a plurality of solar cells having the thin semiconductor crystalline films and arranged in a module.
摘要:
Disclosed herein is a semiconductor laser device capable of exhibiting very low threshold current and operating in a fundamental transverse mode stably even at a high power operation, and a method for fabricating the same. The fabricating method includes only two crystal growth steps to thereby produce the semiconductor laser device capable of operating in the fundamental transverse mode at high power operation. The thus obtained device has high reproducability due to the simple fabricating process.
摘要:
A semiconductor laser device comprises a semiconductor substrate of the first conductive type, with a groove, the width of the bottom of which is greater than that of the top, a current blocking layer of the second conducting type, formed on said semiconductor substrate discontinuously at both sidewalls of said groove, a lower side cladding layer of the first conductive type for covering said current blocking layer and the sidewalls of said groove, an active layer formed on said lower side cladding layer and having an band gap smaller than that of said lower side cladding layer and a large refractive index, an upper side cladding layer of the second conductive type formed on said active layer and having an band gap greater than that of the active layer and a small refractive index, and a contact layer of the second conductive type formed on said upper cladding layer so that it is possible to easily grow a high quality crystal repeatedly with merely one crystal growth process and that the laser device has a stable fundamental transverse-mode operation, a low threshold current and small astigmatisms.
摘要:
A method for producing a semiconductor laser which comprises sequentially depositing a lower cladding layer, an active layer, and an upper cladding layer on a substrate, forming a V shaped groove in the deposited layers at least reaching the lower cladding layer, the groove extending in a direction perpendicular to the direction between the surfaces that are to become resonator end surfaces, growing a semiconductor layer having a larger energy band gap than that of the active layer in the groove while retaining the V shaped groove, and cleaving the substrate and layers along the V shaped groove.
摘要:
A semiconductor laser is provided with an active layer which is bent at an angle at both ends of the resonator so that both ends of the waveguide path are formed by semiconductor cladding layers. The structure is effective in increasing the obtainable optical density while decreasing absorption at the waveguide ends.
摘要:
A process of forming electrodes is simplified during modularizing of a solar battery. According to the manufacturing method and the manufacturing apparatus, a thin solar battery is manufactured at a reduced cost and with a better yield. Using a robot which includes a suction chip which can handle a semiconductor film 2 without any damage which is separated from a particular substrate 1, the semiconductor films 2 are each accurately placed through a transparent resin 3 onto a glass substrate 7 which serves as a window of a solar battery, and p-type and n-type electrodes are printed at a time on the semiconductor films 2 which are arranged. Further, since a monolithic tab electrode is soldered to connect the electrodes, the manufacturing processes of the solar battery are simplified.
摘要:
In a method for fabricating a thin film solar cell, a thin semiconductor film serving as a power generating layer is formed on a substrate via an intermediate layer, a plurality of holes are formed penetrating through the thin semiconductor film and reaching the intermediate layer, and the intermediate layer is etched away through the through-holes, separating the thin semiconductor film from the substrate with high-efficiency. Since stress is hardly applied to the thin semiconductor film during the separation process, cracking and breaking of the semiconductor film is avoided. Further, since the surface of the substrate is maintained in good condition, the substrate can be reused, resulting in a reduction in the production cost.
摘要:
In a method of producing a solar cell, a photovoltaic thin semiconductor crystalline film is formed on an underlying substrate and hydrogen passivated throughout the film thickness direction of the photovoltaic film whereby a high efficiency solar cell is obtained. In addition, since the passivation process is performed before forming a rear surface electrode on the thin semiconductor crystalline film, the passivation process is not limited by the rear surface electrode. Thereby, a solar cell having a higher energy conversion efficiency is obtained. The passivation process is performed by exposing the thin semiconductor crystalline film to a hydrogen ion ambient having a low acceleration energy, below 2 KeV, or to a plasma ambient. Therefore, the uniformity of the passivation process at a wafer surface is improved and a large area wafer can be efficient processed. Furthermore, the passivation process can be performed to a plurality of solar cells having the thin semiconductor crystalline films and arranged in a module.