摘要:
A system for controlling the relation in position between a photomask and a wafer for use in manufacturing apparatus of a highly integrated circuit such as large scale integration (LSI). The position control system includes a coherent light source for generating two light beams which are different in frequency and polarizing direction from each other. The light beams from the coherent light source is introduced into a first diffraction grating and the diffracted light from the first diffraction grating selectively pass through a telecentric lens system and are led to second and third diffraction gratings respectively disposed on the photomask and the wafer. Light beat signals are obtained in correspondance with the diffracted light from the second and third difraction gratings and the position relation between the photomask and wafer is controlled on the basis of the phase difference between the obtained light beat signals which corresponds to the position difference between the photomask and the wafer.
摘要:
A first lens, a second lens, means and a third lens means are arranged successively in a direction of travel of a ray. The first lens means each comprising a single lens element power. The second lens means has a predetermined negative refracting power. The third lens means has a predetermined positive refracting power. A fourth lens means consisting of a plurality of lens elements follows the third lens means in the direction of travel of the ray and has a predetermined positive refracting power. At least one surface of the first, second, third, and fourth lens elements is aspherical. The follwoing conditions (1), (2), and (3) are satisfied:4f
摘要:
A reduction projection type alignment and exposure apparatus having a light source, for alignment, a reticle having at least a first grating, first lens system, a spatial filter disposed around a Fourier spectral plane of the first lens system, second lens system, a wafer having at least a second grating, and a photo-detector for detecting light intensity of superimposed beams appearing on the spatial filter. An optical system for light exposure is provided separately from the optical system for alignment which includes the light source for alignment, first and second lens system, spatial filter, etc. The light beam generated from the light source for alignment is applied to the reticle at which it is divided into a plurality of difracted light beams by the first grating, and the diffracted light beams are applied through the first lens system, spatial filter and second lens system onto the wafer so that the diffracted light beams are re-diffracted by the second grating, and the re-diffracted light beams are superimposed with the diffracted light beams and the light intensity of the superimposed beams detected by the photo-detector.
摘要:
A method for evaluating a resist coating comprising the steps of: forming a first layer resist pattern including an alignment mark by applying a first resist on a semiconductor substrate and by exposing and developing said first resist, said first layer resist pattern having a ridge portion; irradiating said first layer resist pattern with a deep ultraviolet ray; applying, onto said irradiated first layer resist pattern, a second resist having substantially the same refractive index as said first resist to form a second resist coating; detecting said alignment mark formed in said first layer resist pattern, and relatively positioning a pattern for said second resist and said first layer resist pattern; and determining nonuniformity characteristics of said second resist coating by measuring an overlay accuracy between said first layer resist pattern and said pattern for said second resist. The present invention ensures a quantitative evaluation in a non-contact manner for non-uniformity of a resist coating, and enables a resist coating method to be optimized.
摘要:
Disclosed is a fine pattern forming method which is capable of forming a high positive-to-negative reversal pattern high in dry-etch resistance, at high density, by irradiating an entire surface of a resist with ion shower at low doses before or after electron beam or focus ion beam exposure, and then developing it.
摘要:
A reduction projection type alignment and exposure apparatus which comprises a light source, a reticle having a first grating, first lens system, a spatial filter disposed around a Fourier spectral plane of the first lens system, second lens system, a substrate having a second grating, and a plurality of photo-detectors for detecting light intensities of a plurality of spectrums appearing on the spatial filter.The light beam generated from the light source is applied to the reticle at which it is divided into a plurality of diffracted light beams by the first grating, and the diffracted light beams are applied through the first lens system, the spatial filter and the second lens system onto the substrate so that the diffracted light beams are re-diffracted by the second grating, and the re-diffracted light beams appear as a plurality of spectrums on the spatial filter. These spectrums are detected by photo-detectors and used for alignment of the reticle and the substrate.
摘要:
An optical apparatus for aligning a reticle and a wafer together in connection with reduction projection onto the wafer of an image of a circuit pattern formed on the reticle. Two light beams having slightly different frequencies are concurrently applied to alignment gratings on the reticle and alignment gratings on the wafer through the windows on the reticle and a reduction projection lens. Heterodyne signals of interference rays resulting from diffraction by the alignment gratings on the reticle of the light applied to the alignment gratings are caught by a first optical sensor. Heterodyne signals of interference rays resulting from diffraction by the alignment gratings on the wafer of the light applied to the alignment gratings are caught by a second optical sensor. The difference in phase of the heterodyne signals detected by the respective optical sensors is detected by a phase meter, and the position of the wafer relative to the reticle is adjusted so that the phase difference is reduced to zero.
摘要:
A projection optical system for use in a precise copy which uses a pair of catadioptric optical systems consisting of convex mirrors, concave mirrors, and phase correction members is shown. Two catadioptric optical systems commonly use an entrance pupil on a coaxis and are coupled so as to respectively face the phase correction members. Each of the concave mirrors has an opening at the center. Each of the convex mirrors has no opening in one embodiment but has an opening portion at the center in another embodiment.
摘要:
A projection optical system for photolithography includes a refraction sub-system and a cata-dioptric sub-system optically connected to each other. The refraction sub-system extends at an object side. The cata-dioptric sub-system extends at an image side. The refraction sub-system is generally composed of refracting members. The cata-dioptric sub-system is generally composed of a phase compensating member, a concave mirror, and a convex mirror. The phase compensating member adjoins the refraction sub-system. At least the concave mirror has a central opening through which light passes. The light forms an image at a rear of the concave mirror.
摘要:
There is provided a vehicle system, including an electromobile having a fuel cell power generator mounted therein, and a predetermined mobile unit jointable to the electromobile, such that cogeneration within the mobile unit can be realized even during the travel of the electromobile. Via a joint section 30, a vehicle 10 including a fuel cell 13 as a source of motive power is jointed to a mobile unit 20 capable of travelling and at least including a storage battery 23 and a water tank 25. The water produced in the fuel cell 13 is recovered by a water recovery section 21 via the joint section 30. The heat produced in the fuel cell 13 is recovered by a heat recovery section 22 via the joint section 30. The recovered water is warmed up with the recovered heat, and thereafter stored in the water tank 25. The hot water stored in the water tank 25 is utilized as hot water to be used for controlling the temperature of the mobile unit 20 or supplied as hot water. Any excess electric power generated by the fuel cell 13 is stored in the storage battery 23, and supplied onto electric wiring within the mobile unit 20.