摘要:
A circuit board is configured so as to include not less than two wiring layers, an insulator layer for electric insulation between the wiring layers, and an inner-via-hole conductive member provided in the insulator layer in a thickness direction of the insulator layer, for electric connection between the wiring layers. The insulator layer is made of a composite material containing an organic resin and a material having a smaller thermal expansion coefficient than that of the organic resin, and includes a surface part, a core part, and a surface part laminated in the stated order, the surface part having a high content of the organic resin, the core part having a low content of the organic resin. The wiring layers have a land portion that is connected with the inner-via-hole conductive member, the land portion being embedded so as to be substantially in contact with the core part, and the inner-via-hole conductive member has a thickness substantially equal to a thickness of the core part. According to this configuration, a part of the metal foil is embedded in the insulator layer so as to be in contact with the core layer. Therefore, this makes it possible to provide a circuit board in which portions of the conductive material can be selectively compressed, and which hence is capable of ensuring stable connection between layers.
摘要:
A circuit board is configured so as to include not less than two wiring layers, an insulator layer for electric insulation between the wiring layers, and an inner-via-hole conductive member provided in the insulator layer in a thickness direction of the insulator layer, for electric connection between the wiring layers. The insulator layer is made of a composite material containing an organic resin and a material having a smaller thermal expansion coefficient than that of the organic resin, and includes a surface part, a core part, and a surface part laminated in the stated order, the surface part having a high content of the organic resin, the core part having a low content of the organic resin. The wiring layers have a land portion that is connected with the inner-via-hole conductive member, the land portion being embedded so as to be substantially in contact with the core part, and the inner-via-hole conductive member has a thickness substantially equal to a thickness of the core part. According to this configuration, a part of the metal foil is embedded in the insulator layer so as to be in contact with the core layer. Therefore, this makes it possible to provide a circuit board in which portions of the conductive material can be selectively compressed, and which hence is capable of ensuring stable connection between layers.
摘要:
A circuit board manufacturing method including the steps of forming a through hole on an insulator layer and then filling the through hole with a conductive paste; dispersing and forming a protective agent on an adhesion surface of a conductor foil so as to include adhesion surface regions where the protective agent does not exist; sticking the conductor foil to the insulator layer; and abutting a plurality of conductive powders constituting the conductive paste and the conductor foil to each other through the adhesion surface regions by means of heating and pressurizing the insulator layer and conductor foil.
摘要:
A protective agent 6 for protecting a wiring 1 is dispersed and placed in mottle-like on an interface between a via 3 and a wiring layer 2. Then, each dimension of interface regions 7 where the protective agent 6 does not exist is set to such a size that a plurality of conductive powders 4 constituting the via 3 can abutted on the wiring layer 2. Therefore, the plurality of conductive powders 4 and the wiring layer 2 are abutted each other in each interface region 7 where the protective agent 6 does not exist to electrically connect, thereby stabilizing the connection resistance for a prolonged period of time.
摘要:
The present invention aims to provide a wiring substrate highly reliable in insulation and connection and a method for manufacturing the wiring substrate. A wiring substrate having two or more wiring layers, insulation layers interposed between the neighboring wiring layers and containing an organic resin, and a via formed in the insulation layers and extended between neighboring wiring layers. The via including functional substances, as well as some of the voids (first voids) where at least the organic resins from the insulation layers exist and the remaining voids (second voids) where a gas exists.
摘要:
A paste for via-hole filling is provided, and the paste comprises at least (a) 30-70 volume % of conductive particles whose average diameter ranges from 0.5 to 20 .mu.m and whose specific surface area ranges from 0.05 to 1.5 m.sup.2 /g, and (b) 70-30 volume % of resin comprising at least 10 weight % of epoxy resin comprising at least one epoxy group per molecule, in which the total amount of a hydroxyl group, an amino group and a carboxyl group is not more than 5 mol % of the epoxy group, and the epoxy equivalent ranges from 100 to 350 g/eq. The conductive paste for filling via-holes and a printed circuit board comprising thereof can be used to provide an inner-via-hole connection between electrode layers without using a through-hole plating technique. The conductive paste comprises a metallic particle such as copper, an epoxy resin, a hardener and a dispersant if necessary. The paste having low viscosity and low volatility is used to fill holes disposed in a laminated substrate. Then, this substrate is heated and pressurized together with copper foils on both sides to attain a printed circuit board where both sides are electrically connected by inner-via-hole.
摘要:
A method for manufacturing a flexible semiconductor device includes (i) forming an insulating film on the upper surface of metal foil, (ii) forming an extraction electrode pattern on the upper surface of the metal foil, (iii) forming a semiconductor layer on the insulating film such that the semiconductor layer is in contact with the extraction electrode pattern, (iv) forming a sealing resin layer on the upper surface of the metal foil such that the sealing resin layer covers the semiconductor layer and the extraction electrode pattern, and (v) forming electrodes by etching the metal foil, the metal foil being used as a support for the insulating film, the extraction electrode pattern, the semiconductor layer, and the sealing resin layer formed in (i) to (iv) and used as a constituent material for the electrodes in (v). The metal foil need not be stripped, and a high-temperature process can be used.
摘要:
There is provided a method for manufacturing a flexible semiconductor device characterized by comprising (i) a step of forming an insulating film on the upper surface of metal foil, (ii) a step of forming an extraction electrode pattern on the upper surface of the metal foil, (iii) a step of forming a semiconductor layer on the insulating film in such a manner that the semiconductor layer is in contact with the extraction electrode pattern, (iv) a step of forming a sealing resin layer on the upper surface of the metal foil in such a manner that the sealing resin layer covers the semiconductor layer and the extraction electrode pattern, and (v) a step of forming electrodes by etching the metal foil, wherein the metal foil is used as a support for the insulating film, the extraction electrode pattern, the semiconductor layer, and the sealing resin layer formed in (i) to (iv) and used as a constituent material for the electrodes in (v). A TFT element can be fabricated by a simple process because the metal foil serving as the support need not be finally stripped off. Further, a high-temperature process can be introduced to the fabrication of the insulating film and the semiconductor layer because the metal foil is used as the support, whereby the TFT characteristic is improved.
摘要:
There is provided a flexible semiconductor device. The flexible semiconductor device of the present invention comprising a support layer, a semiconductor structure portion formed on the support layer, and a resin film formed on the semiconductor structure portion. The resin film comprises an opening formed by a laser irradiation therein, and also an electroconductive member which is in contact with the surface of the semiconductor structure portion is disposed within the opening of the resin film.
摘要:
There is provided a flexible semiconductor device. The flexible semiconductor device of the present invention comprising a support layer, a semiconductor structure portion formed on the support layer, and a resin film formed on the semiconductor structure portion. The resin film comprises an opening formed by a laser irradiation therein, and also an electroconductive member which is in contact with the surface of the semiconductor structure portion is disposed within the opening of the resin film.