摘要:
A production equipment includes a substrate 2 placed inside and having a plurality of semiconductor elements 3 mounted thereon, and a resin molding mold 20 having a cavity 21. The mold 20 has resin injection ports 29a and air release ports 30a. Each of the resin injection ports 29a is formed in a top surface portion of the cavity in the mold in association with the corresponding semiconductor element 3. Each of the air release ports 30a is formed around each of the resin injection ports 29a.
摘要:
A production equipment includes a substrate 2 placed inside and having a plurality of semiconductor elements 3 mounted thereon, and a resin molding mold 20 having a cavity 21. The mold 20 has resin injection ports 29a and air release ports 30a. Each of the resin injection ports 29a is formed in a top surface portion of the cavity in the mold in association with the corresponding semiconductor element 3. Each of the air release ports 30a is formed around each of the resin injection ports 29a.
摘要:
A resin molding mold 20 with a cavity 21 has a resin injection port 29a from which a molding resin 25 is injected toward the cavity 21, and an air release port 30a from which air from the cavity 21 is released during resin injection. Not only the resin injection port 29a but also the air release port 30a is formed in a top surface portion 21a of the cavity 21. Thus, even if a resin burr remains in the resin injection port 29a or the air release port 30a, it can be prevented from adhering to an external terminal 4A provided on a front surface portion 2a of the substrate 2.
摘要:
A resin molding mold 20 with a cavity 21 has a resin injection port 29a from which a molding resin 25 is injected toward the cavity 21, and an air release port 30a from which air from the cavity 21 is released during resin injection. Not only the resin injection port 29a but also the air release port 30a is formed in a top surface portion 21a of the cavity 21. Thus, even if a resin burr remains in the resin injection port 29a or the air release port 30a, it can be prevented from adhering to an external terminal 4A provided on a front surface portion 2a of the substrate 2.
摘要:
A semiconductor device 20 formed on a semiconductor chip substrate 30 has a plurality of circuit blocks made up of circuits each containing at least a metal oxide semiconductor (MOS) transistor 36, the circuit blocks being covered on top with a protective film 41 to protect the circuits. A plurality of bumps 23a, 23b, 23c are formed, at least via the protective film 41, only on circuit blocks whose current-carrying ability and threshold voltage do not satisfy predetermined values and which are in need of performance enhancement. The bumps 23a, 23b, 23c impose stresses on the MOS transistors 36, increasing the mobility of the MOS transistors 36 and thereby improving the performance of the semiconductor device 20.
摘要:
A semiconductor device 20 formed on a semiconductor chip substrate 30 has a plurality of circuit blocks made up of circuits each containing at least a metal oxide semiconductor (MOS) transistor 36, the circuit blocks being covered on top with a protective film 41 to protect the circuits. A plurality of bumps 23a, 23b, 23c are formed, at least via the protective film 41, only on circuit blocks whose current-carrying ability and threshold voltage do not satisfy predetermined values and which are in need of performance enhancement. The bumps 23a, 23b, 23c impose stresses on the MOS transistors 36, increasing the mobility of the MOS transistors 36 and thereby improving the performance of the semiconductor device 20.
摘要:
A semiconductor device 20 formed on a semiconductor chip substrate 30 has a plurality of circuit blocks made up of circuits each containing at least a metal oxide semiconductor (MOS) transistor 36, the circuit blocks being covered on top with a protective film 41 to protect the circuits. A plurality of bumps 23a, 23b, 23c are formed, at least via the protective film 41, only on circuit blocks whose current-carrying ability and threshold voltage do not satisfy predetermined values and which are in need of performance enhancement. The bumps 23a, 23b, 23c impose stresses on the MOS transistors 36, increasing the mobility of the MOS transistors 36 and thereby improving the performance of the semiconductor device 20.
摘要:
A semiconductor device 20 formed on a semiconductor chip substrate 30 has a plurality of circuit blocks made up of circuits each containing at least a metal oxide semiconductor (MOS) transistor 36, the circuit blocks being covered on top with a protective film 41 to protect the circuits. A plurality of bumps 23a, 23b, 23c are formed, at least via the protective film 41, only on circuit blocks whose current-carrying ability and threshold voltage do not satisfy predetermined values and which are in need of performance enhancement. The bumps 23a, 23b, 23c impose stresses on the MOS transistors 36, increasing the mobility of the MOS transistors 36 and thereby improving the performance of the semiconductor device 20.
摘要:
The present invention relates to a pyrimidine compound or a pharmaceutically acceptable salt thereof represented by the following formula [I] wherein each symbol is as defined in the specification and a method of therapeutically or prophylactically treating an undesirable cell proliferation, comprising administering such a compound. The compound of the present invention has superior activity in suppressing undesirable cell proliferation, particularly, an antitumor activity, and is useful as an antitumor agent for the prophylaxis or treatment of cancer, rheumatism, and the like. In addition, the compound of the present invention can be a more effective antitumor agent when used in combination with other antitumor agents such as an alkylating agent or metabolism antagonist.
摘要:
A semiconductor device, including: a substrate having an upper face on which a first ground pad, a first power supply pad, a first signal pad, and a second signal pad are formed; a first substrate formed on the substrate and having an upper face on which a third signal pad connected to the first signal pad and a first circuit are formed; and a semiconductor element including a second substrate having a reverse face on which a bump electrode connected to the first circuit and a second circuit are formed and an upper face on which a fourth signal pad connected to the second signal pad is formed, with a signal through via connected to the second circuit and the fourth signal pad being buried in the second substrate.