Abstract:
A method for growing nanocrystalline diamond (NCD) on Ga2O3 to provide thermal management in Ga2O3-based devices. A protective SiNx interlayer is deposited on the Ga2O3 before growth of the NCD layer to protect the Ga2O3 from damage caused during growth of the NCD layer. The presence of the NCD provides thermal management and enables improved performance of the Ga2O3-based device.
Abstract:
A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm−3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
Abstract:
A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm−3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
Abstract:
An enhanced symmetric multicycle rapid thermal annealing process for removing defects and activating implanted dopant impurities in a III-nitride semiconductor sample. A sample is placed in an enclosure and heated to a temperature T1 under an applied pressure P1 for a time t1. While the heating of the sample is maintained, the sample is subjected to a series of rapid laser irradiations under an applied pressure P2 and a baseline temperature T2. Each of the laser irradiations heats the sample to a temperature Tmax above its thermodynamic stability limit. After a predetermined number of temperature pulses or a predetermined period of time, the laser irradiations are stopped and the sample is brought to a temperature T3 and held at T3 for a time t3 to complete the annealing.
Abstract:
Thermoelectric (TE) nanocomposite material that includes at least one component consisting of nanocrystals. A TE nanocomposite material in accordance with the present invention can include, but is not limited to, multiple nanocrystalline structures, nanocrystal networks or partial networks, or multi-component materials, with some components forming connected interpenetrating networks including nanocrystalline networks. The TE nanocomposite material can be in the form of a bulk solid having semiconductor nanocrystallites that form an electrically conductive network within the material. In other embodiments, the TE nanocomposite material can be a nanocomposite thermoelectric material having one network of p-type or n-type semiconductor domains and a low thermal conductivity semiconductor or dielectric network or domains separating the p-type or n-type domains that provides efficient phonon scattering to reduce thermal conductivity while maintaining the electrical properties of the p-type or n-type semiconductor.
Abstract:
A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm−3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
Abstract:
A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm−3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
Abstract:
A method for making transparent nanocomposite ceramics and other solid bulk materials from nanoparticle powders and transparent nanocomposite ceramics and other solid bulk materials formed using that method. A nanoparticle powder is placed into a reaction chamber and is treated to produce a clean surface powder. The clean surface powder is coated with a second material by means of p-ALD to produce core/shell or core multi shell nanoparticles having a coating or coatings of a other material surrounding the nanoparticle. The core/shell nanoparticles are cleaned and formed into green compact which is sintered to produce a transparent nanocomposite ceramic or other solid bulk material consisting of nanoparticles or core/shell nanoparticles uniformly embedded in a matrix of a different material, particularly in a matrix of a different ceramic material, formed by outer shell of initial core/shell. All steps are performed without exposing the material to the ambient.
Abstract:
A process for producing metastable nanocrystalline alpha-alumina (α-Al2O3) having particle sizes smaller than 12 nm. Starting crystallites of α-Al2O3 having a particle size larger than 12 nm, typically on the order of about 50 nm, are ball-milled at low temperatures to produce a nanocrystalline α-Al2O3 powder having a particle size of less than 12 nm, i.e., below the theoretical room temperature thermodynamic size limit at which α-Al2O3 changes phase to γ-Al2O3, wherein the powder remains in the α-Al2O3 phase at all times.
Abstract:
A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO-CaO-Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
Abstract translation:具有与金属基体接触的钪和钡化合物的难熔金属基体的热离子分配器阴极及其形成方法。 本发明利用原子层沉积(ALD)在钨表面上形成钪化合物的纳米尺度均匀的共形分布,并进一步利用原位高压固结/浸渍以增强BaO-CaO-Al 2 O 3基发射混合物的浸渍 钪酸盐涂层的钨基体或烧结钨/钪酸盐/钡复合结构。 结果是具有改善的发射的钨 - 钪酸盐热阴极。