Abstract:
A vehicular powertrain system includes a prime mover having an output, a multi-ratio transmission having an input, and a torque reduction coupling system coupling the prime mover output and the multi-ratio transmission input. The exemplary torque reduction coupling system includes a clutch and a planetary gear set selectively coupling the prime mover output to the multi-ratio transmission input. The exemplary planetary gear set includes one components of the planetary gear set being selectively coupled to the clutch.
Abstract:
A control system/method for an at least partially automated transmission system (100) includes means to determine engine fueling required to cause a gross engine output torque (TEG (for zero flywheel torque)) resulting in zero flywheel torque (TFW=0). The engine (102) is caused to be fueled to the level required to cause zero flywheel torque at certain predetermined conditions, such as, for example, when disengaging a currently engaged ratio or during throttle recovery.
Abstract:
An integral gear life monitor system and method for determining gear use and damage is disclosed. The system includes a first and second sensors for measuring the rotational speed and torque of a driveline component, such as an input shaft of a vehicle transmission, for a particular gear ratio at one or more time intervals over a period of time. Each time interval may be in the range of 40 ms to 100 ms. The period of time may be hours, days, month, or even years. A processor performs a statistical summation technique to transform the signals from the first and second sensors into an equivalent amount time for the particular gear ratio during that period of time. A driveline vibration analyzer can perform an online determination of the torsional vibrations for the particular gear ratio to determine whether vibration is a root cause of why a gear ratio is worn or damaged. The transformed signals can be stored in a non-volatile memory of the processor for later retrieval as a diagnostic tool to statistically measure the amount of life used by each gear ratio, to determine if a gear ratio is worn or damaged, to determine the root cause of why a gear ratio is worn or damaged, and to take proactive and/or reactive measures to extend the life of the transmission.
Abstract:
A control for enhanced manual shifting in a computer-assisted (48) vehicular splitter-type compound transmission (16) having a synchronized main section (16A) shifted by a manually operated shift lever (31) and a controller (42). The splitter section (16E) is provided with a three-position (L, H, N) actuator (46) and is commanded to a splitter-neutral position upon sensing a main section shift to neutral to reduce the forces required to synchronize the main section.
Abstract:
A system/method of resetting the value of a control parameter (GCW.sub.CP indicative of vehicular gross combined weight and determined as a filtered/averaged value, to a predetermined default value, or to a test value, upon sensing vehicle operating conditions (OS=Oand t>REF) deemed indicative of a change in vehicle loading is provided. A vehicle automated system, such as an automated mechanical transmission system, is controlled as a function of the value of the control parameter.
Abstract:
A control system/method for an at least partially automated mechanical transmission system (10) is provided for determining if selected upshifts into a target gear ratio are feasible (208) or not feasible (210) under current vehicle operating conditions and for prohibiting the initiation of not feasible selected upshifts.
Abstract:
A control (220) for providing a dual pressure source (236) of pressurized fluid to a pressurized fluid operated shift actuator (30) for a mechanical change gear transmission (202) is provided.
Abstract:
A control system (104) for semi-automatically executing automatically and manually selected upshifts and downshifts of a mechanical transmission system (10) is provided. The control system includes a central processing unit (106) for receiving input signals indicative of transmission input shaft (16) and output shaft (90) speeds and from a driver control console (108) indicative of manual selection of upshifts or downshifts from a currently engaged gear ratio, or manual selection of operation in an automatic preselect mode, and processing the same in accordance with predetermined logic rules to issue command output signals to a transmission actuator (112, 70, 96) to implement the selected shifts upon a manually caused torque break of the transmission and manual substantial synchronization of the transmission in the selected ratio thereafter.
Abstract:
This invention provides a common means of coupling an alternative power source to a vehicle's drive wheels which is particularly well suited for use with a countershaft-type transmission. This invention also addresses clutch wear by eliminating the need to engage the frictional clutch to launch the vehicle. This invention also improves the acceleration of the vehicle compared to a typical dry friction clutch launch by relying on the HLA system to transfer more power to the drive wheels more quickly than would be transferred by a typical launch engagement of a dry friction clutch in a commercial vehicle.
Abstract:
An automated vehicle transmission having a wet clutch and an auxiliary motor that is operatively connected to the transmission to overcome residual torque forces in the wet clutch. Residual torque forces in the wet clutch may prevent disengagement of a gear train and also prevent the transmission from shifting into neutral. A control system determines whether residual torque is resisting the disengagement of the gear train for more than a predetermined time period. According to the method, if a shift is delayed for more than the predetermined time period, the auxiliary motor is actuated to apply an oppositely oriented torque to the transmission gear train to overcome the residual torque and allow the transmission to shift into neutral.