摘要:
Heavy oils are subjected to catalytic cracking in the absence of added hydrogen using a catalyst containing a zeolite having the structure of ZSM-12 and a large-pore crystalline zeolite having a Constraint Index less than about 1. The process is able to effect a bulk conversion of the oil while at the same time yielding a higher octane gasoline and increased light olefin content.
摘要:
This invention relates to use of synthetic layered material MCM-56 as a sorbent and as a catalyst component in catalytic conversion of organic compounds. Examples of sorbent use include rapid sorption of hydrocarbons and separating at least one hydrocarbon component from a mixture of hydrocarbon components having differential sorption characteristics with respect to MCM-56. Examples of catalytic use include acid catalyzed reactions, such as cracking, aromatic compound alkylation, and isoalkane alkylation.
摘要:
Methods for preparing phosphorus containing catalysts comprising a large-pore zeolite, e.g., zeolite Beta, zeolite ZSM-12, or zeolite ZSM-20, and a matrix which have improved attrition resistance. The present invention includes the catalyst compositions produced by the above methods. Also included in the present invention are methods for the use of catalysts prepared by the present method in hydrocarbon cracking processes. It is desired to develop cracking catalysts for organic compound conversion that have improved cracking yields and have good attrition resistance. This invention involves the use of large pore siliceous zeolites and a highly siliceous matrix to produce a cracking catalyst with improved cracking yields and good attrition resistance. The invention further involves the use of phosphorus and the use of selected sequences for combining the compounds in the manufacture of the catalyst to enhance the attrition resistance of the catalyst.
摘要:
Methods for preparing phosphorus containing catalysts comprising a large-pore zeolite, e.g., zeolite Beta, zeolite ZSM-12, or zeolite ZSM-20, and a matrix which have improved attrition resistance. The present invention includes the catalyst compositions produced by the above methods. Also included in the present invention are methods for the use of catalysts prepared by the present method in hydrocarbon cracking processes. It is desired to develop cracking catalysts for organic compound conversion that have improved cracking yields and have good attrition resistance. This invention involves the use of large pore siliceous zeolites and a highly siliceous matrix to produce a cracking catalyst with improved cracking yields and good attrition resistance. The invention further involves the use of phosphorus and the use of selected sequences for combining the compounds in the manufacture of the catalyst to enhance the attrition resistance of the catalyst.
摘要:
Long chain alkyl substituted naphthalenes are produced by alkylating naphthalene with an olefin or other alkylating agent with at least 6, and usually 12 to 20 carbon atoms, in the presence of an alkylation catalyst comprising a zeolite having rare earth cations, and both ammonium and protonic species, associated with the exchangeable sites of the zeolite. The zeolite is usually a large pore size zeolite such as USY. The presence of rare earths and both ammonium and protonic species increases selectivity for production of long chain mono-alkyl substituted naphthalenes in preference to more highly substituted products.
摘要:
Long chain alkyl substituted naphthalenes are produced by alkylating naphthalene with an olefin or other alkylating agent with at least 6, and usually 12 to 20 carbon atoms, in the presence of an alkylation catalyst comprising a zeolite having both ammonium and protonic species associated with the exchangeable sites of the zeolite. The zeolite is usually a large pore size zeolite such as USY. The presence of both ammonium and protonic species increases selectivity for production of long chain mono-alkyl substituted naphthalenes in preference to more highly substituted products.
摘要:
A process for isomerization dewaxing of a hydrocarbon feed which includes contacting the hydrocarbon feed with a large pore size, small crystal size, crystalline molecular sieve and an intermediate pore size, small crystal size, crystalline molecular sieve to produce a dewaxed product with a reduced pour point and a reduced cloud point. In a preferred embodiment, the feed is contacted with the molecular sieves sequentially, first with the large pore sieve followed by the intermediate pore sieve.
摘要:
Akylation product is contacted with a purification medium in a liquid phase pre-reaction step to remove impurities and form a purified stream. The purified stream may then be further processed by liquid phase transalkylation to convert the polyalkylated aromatic compound to a monoalkylated aromatic compound. The process may use a large pore molecular sieve catalyst such as MCM-22 as the purification medium in the pre-reaction step because of its high reactivity for alkylation, strong retention of catalyst poisons and low reactivity for oligomerization under the pre-reactor conditions. Olefins, diolefins, styrene, oxygenated organic compounds, sulfur containing compounds, nitrogen containing compounds and oligomeric compounds are removed.
摘要:
A catalyst composition which comprises a crystalline metallosilicate having the structure of zeolite Beta, phosphor and a matrix that is substantially free of crystalline aluminum phosphate which has improved resistance to steam deactivation which has higher cracking activity than analogous catalysts prepared without phosphorus. The crystalline metallosilicate be used in the as-synthesized form or in the calcined form. included is the method to produce the catalyst composition and methods for the use of catalysts prepared by the present method in organic conversion processes. Specific embodiments of the invention involve various techniques for preparation of catalyst containing phosphorus and crystalline metallosilicates having the structure of zeolite Beta. Catalysts prepared according to the method of this invention are useful for organic compound, e.g., hydrocarbon compound, conversion processes. Organic compound conversion processes include cracking, hydrocracking, and transalkylation, among others.