Abstract:
A manufacturing method for a semiconductor device includes forming a dielectric film on a semiconductor substrate or on a lower electrode that is formed on a semiconductor substrate, attaching a metal to a predetermined area on a surface of the dielectric film selectively, forming a metal oxide film with an insulation property in the predetermined area on the surface of the dielectric film by applying heat treatment to the metal, and forming an upper electrode on the dielectric film in a state where the metal oxide film is formed in the predetermined area on the surface of the dielectric film.
Abstract:
A substrate processing method includes: forming a metal film, which changes in volume when the metal film is oxidized, on a rear surface of a substrate; forming an oxide film, through which oxygen permeates, on a front surface of the metal film; and applying stress to the substrate by oxidizing the metal film.
Abstract:
A method of forming conductive member includes: forming, on substrate, first portion containing first element constituting the conductive member to be obtained and second element causing eutectic reaction with the first element, and second portion containing third element constituting intermetallic compound with the second element; crystallizing primary crystals of the first element by adjusting temperature of the substrate after bringing the first portion into liquid phase state; growing crystal grains of the first element by diffusing the second element from the first portion into the second portion to increase ratio of the first element in crystal state to the first and second elements in the liquid phase state in the first portion while maintaining the temperature of the substrate at the same temperature; and turning the first portion, after completing diffusion of the second element into the second portion, into the conductive member having crystal grains of the first element.
Abstract:
A semiconductor device manufacturing method that includes: forming a gate insulating film containing a hafnium oxide and a zirconium oxide on a workpiece having a source, a drain and a channel; and subjecting the gate insulating film to a crystallization heat treatment at a temperature of 600 degrees C. or less is provided. The gate insulating film subjected to the crystallization heat treatment has a relative permittivity of 27 or more.