Abstract:
A substrate processing apparatus includes a process container; a process gas supply mechanism; a substrate loading table; a temperature adjusting medium passage; a temperature adjusting medium extraction mechanism; a heater; and a temperature controller. The temperature controller is configured to adjust a temperature of a target substrate to a first temperature by allowing a temperature adjusting medium to flow through the temperature adjusting medium passage of the substrate loading table; and adjust the temperature of the target substrate to a second temperature higher than the first temperature by extracting the temperature adjusting medium of the temperature adjusting medium passage using the temperature adjusting medium extraction mechanism while heating the target substrate using the heater.
Abstract:
A substrate support is provided. The substrate support includes a main body of the substrate support that receives a heat input from at least an outside of the substrate support, a refrigerant passage provided in the main body and configured to take heat from the main body by a refrigerant, a switching mechanism that switches a position where the refrigerant is supplied to the refrigerant passage and a position where the refrigerant is discharged from the refrigerant passage between one end and the other end of the refrigerant passage in order to reverse a direction in which the refrigerant flows in the refrigerant passage, and a control unit. The control unit is configured to control the switching mechanism so as to repeatedly reverse the direction in which the refrigerant flows during a period in which the main body receives the heat input.
Abstract:
A substrate processing apparatus removes carbon-containing substances present at a peripheral edge of a substrate, which includes: a processing container; a substrate stage that places the substrate thereon within the processing container and supports at least a portion of the substrate excluding the peripheral edge; an LED heating unit that has a plurality of LED elements and irradiates the peripheral edge of the substrate with LED light from the plurality of LED elements, thereby heating the carbon-containing substances present at the peripheral edge; and a gas supply unit that supplies an oxygen-containing gas to the peripheral edge of the substrate.
Abstract:
The present invention provides a substrate stage and a substrate processing apparatus that appropriately control a temperature of a staging surface on which a substrate is placed. The substrate stage includes a stage base including a cooling surface therein, and a supply flow path forming member formed of a material having a lower thermal conductivity than that of the stage base and including cooling nozzles configured to spray a coolant toward the cooling surface.
Abstract:
A source material container includes a housing, a tray assembly and a plurality of cylindrical members. The housing provides a carrier gas introduction port and an opening through which a gas containing source material vapor is outputted. The tray assembly trays stacked in the housing. The cylindrical members are arranged in a radial direction between the tray assembly and the housing. The outermost cylindrical member provides a slit and each of the other cylindrical members than the outermost cylindrical member provides a plurality of slits. From the introduction port to the gap between the tray assembly and the innermost cylindrical member, the flow path of the carrier gas is branched in a stepwise manner in the height direction.
Abstract:
A heating device for heating a substrate directly on the heating device or indirectly placed on the heating device via another member, includes a linear heater and a base having a groove depressed from a side opposite the substrate toward the substrate, the linear heater being fixed inside the groove. The groove has a contact portion provided on a front side of the groove so as to come into contact with the linear heater and a non-contact portion provided on a back side of the groove so as not to come into contact with the linear heater.
Abstract:
An apparatus for forming a predetermined film on a substrate, includes a processing container into which a film-forming raw material gas is introduced, a stage provided inside the processing container, and a housing body provided below the processing container and communicating with an exhaust port provided in a bottom portion of the processing container. The housing body includes a housing section that houses a support member of the stage, and a manifold section opened toward the housing section while being in communication with an exhaust device. An exhaust space is formed at a side of a lower surface of the stage. Atmosphere above the stage flows into the exhaust space along a peripheral portion of the stage. The housing section is smaller in horizontal cross-sectional area than the exhaust space. An inlet of the housing section is smaller in cross-sectional area than an outlet of the housing section.
Abstract:
A method of controlling a substrate treatment apparatus including a chamber, a stage having elevation pins, a gas introducer disposed above the stage and introducing a treatment gas into the chamber, a first heating source heating the gas introducer, a stage elevator moving the stage up/down, and an elevator for elevation pins moving the elevation pins up/down, is provided. The method includes supporting a substrate having an oxide on the stage; etching the oxide using a treatment gas by supplying the treatment gas from the gas introducer; moving down the stage while maintaining a position of the substrate using the elevation pins; and sublimating a reaction product produced in etching the oxide by the first heating source.
Abstract:
A gas supply device 3 includes a device body 31 forming a substantially conical gas-conducting space 32 for conducting gases therethrough from a diametrally reduced end 32a of the space 32 to a diametrally enlarged end 32b thereof, gas introduction ports 61a to 63a, 61b to 63b, and 64, each provided near the diametrally reduced end 32a of the gas-conducting space 32 in the device body 31 to introduce the gases into the gas-conducting space 32, and a plurality of partitioning members 41 to 46 provided in the gas-conducting space 32 of the device body 31 to partition the gas-conducting space 32 concentrically. The partitioning members 42 to 46 arranged adjacently to each other at a radially outer side of the gas-conducting space 32 are greater than the adjacently arranged partitioning members 41 to 45 at a radially inner side in dimensionally diverging rate per partitioning member. Thus, internal gas flow channels of the gas supply device have high gas conductance and enhanced gas replaceability, compared with those of the conventional gas showerhead.
Abstract:
A method of forming a ruthenium film on a substrate by supplying a ruthenium-containing gas includes: forming an adsorption inhibition layer that inhibits adsorption of the ruthenium-containing gas by supplying an adsorption inhibition gas to an end portion and a rear surface of the substrate; transferring the substrate to a chamber; and forming the ruthenium film on the substrate by supplying the ruthenium-containing gas to the chamber.