摘要:
According to one embodiment, a nonvolatile semiconductor memory device comprises a first conductive layer, a second conductive layer, a first inter-electrode insulating film, and a third conductive layer stacked above the first conductive layer, a memory film, a semiconductor layer, an insulating member, and a silicide layer. The memory film and the semiconductor layer is formed on the inner surface of through hole provided in the second conductive layer, the first inter-electrode insulating film, and the third conductive layer. The insulating member is buried in a slit dividing the second conductive layer, the first inter-electrode insulating film, and the third conductive layer. The silicide layer is formed on surfaces of the second conductive layer and the third conductive layer in the slit. The distance between the second conductive layer and the third conductive layer along the inner surface of the slit is longer than that of along the stacking direction.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and a drive circuit. The stacked body is provided on the substrate. The stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films. A through-hole is made in the stacked body to align in a stacking direction. The semiconductor pillar is buried in an interior of the through-hole. The charge storage film is provided between the electrode film and the semiconductor pillar. The drive circuit supplies a potential to the electrode film. The diameter of the through-hole differs by a position in the stacking direction. The drive circuit supplies a potential to reduce a potential difference with the semiconductor pillar as a diameter of the through-hole piercing the electrode film decreases.
摘要:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including electrode films alternately stacked with inter-electrode insulating films; first and second semiconductor pillars piercing the stacked structural unit; a connection portion semiconductor layer electrically connect the first and second semiconductor pillars; a connection portion conductive layer provided to oppose the connection portion semiconductor layer; a memory layer and an inner insulating film provided between the first and semiconductor pillars and each of the electrode films, and between the connection portion conductive layer and the connection portion semiconductor layer; an outer insulating film provided between the memory layer and each of the electrode films; and a connection portion outer insulating film provided between the memory layer and the connection portion conductive layer. The connection portion outer insulating film has a film thickness thicker than a film thickness of the outer insulating film.
摘要:
A nonvolatile semiconductor memory device includes: a stacked structural unit including a plurality of electrode films and a plurality of inter-electrode insulating films alternately stacked in a first direction; a first selection gate electrode stacked on the stacked structural unit in the first direction; a first semiconductor pillar piercing the stacked structural unit and the first selection gate electrode in the first direction; a first memory unit provided at an intersection of each of the electrode films and the first semiconductor pillar; and a first selection gate insulating film provided between the first semiconductor pillar and the first selection gate electrode, the first selection gate electrode including a first silicide layer provided on a face of the first selection gate electrode perpendicular to the first direction.
摘要:
A semiconductor memory device includes: a stacked body formed of a plurality of inter-layer insulating films and a plurality of electrode films alternately stacked and having a through-hole formed in the stacking direction; an electrode-side insulating film of a film thickness of 4 nm or more provided on an inner surface of the through-hole; a charge storage film provided on the electrode-side insulating film; a semiconductor-side insulating film of a film thickness of 4 nm or more provided on the charge storage film; and a semiconductor pillar buried in the through-hole.
摘要:
A nonvolatile semiconductor memory device includes: a semiconductor substrate; a multilayer structure; a semiconductor pillar; a third insulating film; and a fourth insulating film layer. The a multilayer structure is provided on the semiconductor substrate and including a plurality of constituent multilayer bodies stacked in a first direction perpendicular to a major surface of the semiconductor substrate. Each of the plurality of constituent multilayer bodies includes an electrode film provided parallel to the major surface, a first insulating film, a charge storage layer provided between the electrode film and the first insulating film, and a second insulating film provided between the charge storage layer and the electrode film. The semiconductor pillar penetrates through the multilayer structure in the first direction. The third insulating film is provided between the semiconductor pillar and the electrode film. The fourth insulating film is provided between the semiconductor pillar and the charge storage layer.
摘要:
According to one embodiment, a columnar semiconductor, a floating gate electrode formed on a side surface of the columnar semiconductor via a tunnel dielectric film, and a control gate electrode formed to surround the floating gate electrode via a block dielectric film are provided.
摘要:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including electrode films alternately stacked with inter-electrode insulating films; first and second semiconductor pillars piercing the stacked structural unit; a connection portion semiconductor layer electrically connect the first and second semiconductor pillars; a connection portion conductive layer provided to oppose the connection portion semiconductor layer; a memory layer and an inner insulating film provided between the first and semiconductor pillars and each of the electrode films, and between the connection portion conductive layer and the connection portion semiconductor layer; an outer insulating film provided between the memory layer and each of the electrode films; and a connection portion outer insulating film provided between the memory layer and the connection portion conductive layer. The connection portion outer insulating film has a film thickness thicker than a film thickness of the outer insulating film.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a stacked structure, a semiconductor pillar, a memory layer and an outer insulating film. The stacked structure includes a plurality of electrode films and a plurality of interelectrode insulating films alternately stacked in a first direction. The semiconductor pillar pierces the stacked structure in the first direction. The memory layer is provided between the electrode films and the semiconductor pillar. The outer insulating film is provided between the electrode films and the memory layer. The device includes a first region and a second region. An outer diameter of the outer insulating film along a second direction perpendicular to the first direction in the first region is larger than that in the second region. A thickness of the outer insulating film along the second direction in the first region is thicker than that in the second region.
摘要:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.