摘要:
A gas flow of a gas pipe is indicated before an electromagnetic valve is actually opened, so that the electromagnetic valve can be prevented from being opened or closed by a wrong manipulation or hazards caused by undesired mixing of gases can be avoided so as to improve safety. The substrate processing apparatus includes a state detection unit configured to detect an opening/closing request state and an opening/closing state of a valve installed at a gas pipeline; and a indication unit configured to indicate a gas flow state of the gas pipeline predicted according to the opening/closing request state and a gas flow state of the gas pipeline when the valve is opened, in a way that each state is distinguished.
摘要:
A gas flow of a gas pipe is indicated before an electromagnetic valve is actually opened, so that the electromagnetic valve can be prevented from being opened or closed by a wrong manipulation or hazards caused by undesired mixing of gases can be avoided so as to improve safety. The substrate processing apparatus includes a state detection unit configured to detect an opening/closing request state and an opening/closing state of a valve installed at a gas pipeline; and a indication unit configured to indicate a gas flow state of the gas pipeline predicted according to the opening/closing request state and a gas flow state of the gas pipeline when the valve is opened, in a way that each state is distinguished.
摘要:
It is an object of the present invention to effectively and efficiently inhibit the influence of an eliminated gas from a built-up film deposited in a reaction chamber and reduce an incubation time to improve flatness of a thin film. A manufacturing method of a semiconductor device includes a preprocess step and a film-forming step. In the preprocess step, an RPH (Remote Plasma Hydrogenation) process of supplying a hydrogen radical onto a substrate (202), thereafter, an RPN (Remote Plasma Nitridation) process of supplying a nitrogen radical onto the substrate (203), and thereafter, an RPO (Remote Plasma Oxidation) process of supplying an oxygen radical onto the substrate (204) are performed during a substrate temperature increase for raising a substrate temperature up to a film-forming temperature. In the film-forming step, after the substrate temperature is raised up to the film-forming temperature, a film-forming process is performed by a thermal CVD method by supplying a source gas onto the substrate (205), and thereafter, the RPO process is performed (206). In this film-forming step, the film-forming source supply onto the substrate and the RPO process are preferably repeated a plurality of times.
摘要:
According to the present invention, flatness of a thin film formed on a substrate is improved without generating particles and lowering productivity. A method of manufacturing a semiconductor device includes a first thin film layer forming step A and a second thin film layer forming step B. In the first thin film layer forming step A, on the way of heating and raising the temperature of the substrate up to a film-forming temperature, a film-forming source supply in which an organic source gas is made adhere onto the substrate in yet unreacted state is performed (202), and thereafter, a RPO process (Remote Plasma Oxidation) in which an oxygen radical is supplied onto the substrate to form a first thin film layer is performed (203). In this first thin film layer forming step A, it is preferable to repeat the film-forming source supply onto the substrate and the RPO process more than once. In the second thin film layer forming step B, after the source gas is supplied onto the substrate by a thermal CVD method to perform a film-forming process (205) after raising the temperature of the substrate to the film-forming temperature, the RPO process is performed to form a second thin film layer on the first thin film layer with a predetermined film thickness (206).
摘要:
A semiconductor device manufacturing method by which a process chamber can be self-cleaned, while keeping a temperature in the process chamber low or a semiconductor device manufacturing method by which a high-k film adhering in the process chamber can be effectively removed. The method is provided with a pre-coat process, a film forming process and a cleaning process. Activated F* or Cl* by remote plasma passes through a high-k film (31), reacts to a pre-coat film (30) composed of SiO2 or Si. Since the pre-coat film (30) peels in pieces, the high-k film over the pre-coat film can be removed together.