摘要:
Disclosed are non-volatile memory devices that incorporate a series of single or double memory cells. The single memory cells are essentially “U” shaped. The double memory cells comprise two essentially “U” shaped memory cells. Each memory cell comprises a memory element having a bi-stable layer sandwiched between two conductive layers. A temporary conductor may be applied to a series of cells and used to bulk condition the bi-stable layers of the cells. Also, due to the “U” shape of the cells, a cross point wire array may be used to connect a series of cells. The cross point wire array allows the memory elements of each cell to be individually identified and addressed for storing information and also allows for the information stored in the memory elements in all of the cells in the series to be simultaneously erased using a block erase process.
摘要:
Disclosed are a semiconductor structure and a method that allow for simultaneous voltage/current conditioning of multiple memory elements in a nonvolatile memory device with multiple memory cells. The structure and method incorporate the use of a resistor connected in series with the memory elements to limit current passing through the memory elements. Specifically, the method and structure incorporate a blanket temporary series resistor on the wafer surface above the memory cells and/or permanent series resistors within the memory cells. During the conditioning process, these resistors protect the transition metal oxide in the individual memory elements from damage (i.e., burn-out), once it has been conditioned.
摘要:
Disclosed are non-volatile memory devices that incorporate a series of single or double memory cells. The single memory cells are essentially “U” shaped. The double memory cells comprise two essentially “U” shaped memory cells. Each memory cell comprises a memory element having a bi-stable layer sandwiched between two conductive layers. A temporary conductor may be applied to a series of cells and used to bulk condition the bi-stable layers of the cells. Also, due to the “U” shape of the cells, a cross point wire array may be used to connect a series of cells. The cross point wire array allows the memory elements of each cell to be individually identified and addressed for storing information and also allows for the information stored in the memory elements in all of the cells in the series to be simultaneously erased using a block erase process.
摘要:
An integrated circuit and method for fabrication includes first and second structures, each including a set of sub-lithographic lines, and contact landing segments connected to at least one of the sub-lithographic lines at an end portion. The first and second structures are nested such that the sub-lithographic lines are disposed in a parallel manner within a width, and the contact landing segments of the first structure are disposed on an opposite side of a length of the sub-lithographic lines relative to the contact landing segments of the second structure. The contact landing segments for the first and second structures are included within the width dimension, wherein the width includes a dimension four times a minimum feature size achievable by lithography.
摘要:
Methods for fabricating a semiconductor device include forming a first layer on an underlying layer, forming a hardmask on the first layer, and patterning holes through the hardmask and first layer. An overhang is formed extending over sides of the holes. A conformal layer is deposited over the overhang and in the holes until the conformal layer closes off the holes to form a void/seam in each hole. The void/seam in each hole is exposed by etching back a top surface. The void/seam in each hole is extended to the underlying layer.
摘要:
Conductive sidewall spacer structures are formed using a method that patterns structures (mandrels) and activates the sidewalls of the structures. Metal ions are attached to the sidewalls of the structures and these metal ions are reduced to form seed material. The structures are then trimmed and the seed material is plated to form wiring on the sidewalls of the structures.
摘要:
A low-k dielectric material for use in the manufacture of semiconductor devices, semiconductor structures using the low-k dielectric material, and methods of forming such dielectric materials and fabricating such structures. The low-k dielectric material comprises carbon nanostructures, like carbon nanotubes or carbon buckyballs, that are characterized by an insulating electronic state. The carbon nanostructures may be converted to the insulating electronic state either before or after a layer containing the carbon nanostructures is formed on a substrate. One approach for converting the carbon nanostructures to the insulating electronic state is fluorination.
摘要:
A combined wide-image and loop-cutter pattern is provided for both cutting and forming a wide-image section to a hard mask on a substrate formed by sidewall imaging techniques in a reduced number of photolithographic steps. A single mask is formed which provides a wide mask section while additionally providing a mask to protect the critical edges of an underlying hard mask during hard mask etching. After the hard mask is cut into sections, the protective portions of the follow-on mask are removed to expose the critical edges of the underlying hard mask while maintaining shapes necessary for defining wide-image sections. Thus, the hard mask cutting, hard mask critical edge protecting, and large area mask may be formed in a reduced number of steps.
摘要:
A method for forming a gate structure for a semiconductor device includes defining a conductive sacrificial structure on a substrate, forming a reacted metal film on sidewalls of the conductive sacrificial structure, and removing unreacted portions of the conductive sacrificial structure.
摘要:
A method for fabricating a metal-oxide-semiconductor device structure. The method includes introducing a dopant species concurrently into a semiconductor active layer that overlies an insulating layer and a gate electrode overlying the semiconductor active layer by ion implantation. The thickness of the semiconductor active layer, the thickness of the gate electrode, and the kinetic energy of the dopant species are chosen such that the projected range of the dopant species in the semiconductor active layer and insulating layer lies within the insulating layer and a projected range of the dopant species in the gate electrode lies within the gate electrode. As a result, the semiconductor active layer and the gate electrode may be doped simultaneously during a single ion implantation and without the necessity of an additional implant mask.