摘要:
Each delay unit is divided into two delay unit groups, the preceding stage side and the succeeding stage side. To the delay unit group in the preceding stage side, power supply voltage is supplied via a power supply terminal, and to each delay unit of the delay unit group in the succeeding stage side, power supply voltage is supplied from the power supply terminal via a power supply control switch. A forward-pulse detecting circuit detects that forward pulse was propagated to a stage between the N-th stage and a stage a predetermined number of stages before the N-th, and outputs the detected result to the power supply control switch. With this operation, when forward pulse is propagated to the (N+1)th stage, power supply voltage is supplied also to the delay unit group in the succeeding stage side. As electric power is not supplied to the delay unit group in the succeeding stage side when forward pulse is not propagated to the (N+1)th stage, wasteful consumption of electric power is prevented.
摘要:
A state-holding circuit initializing circuit initializes state-holding circuit when propagation of forward pulse to the forward-pulse delay circuits in the last stage is detected. With this operation, synchronization is established in a short time from the resumption of outputting from a receiver. The state-holding circuit control circuit also controls the reset timing of the state-holding circuit. A forward-pulse adjusting circuit controls the pulse width of forward pulse to be supplied to the forward-pulse delay line. With this operation, the stages from the stage where rearward pulse was generated to the first stage are securely turned to the set state, enabling propagation of rearward pulse and synchronization is established. Thus, synchronization is established reliably even when output from a receiver stops or the duty of an external clock signal is heavy.
摘要:
A cycle measuring circuit 3 measures a cycle of an external clock signal, which is approximately m times a unit time. A number converting circuit 5 and a time converting circuit 7 cooperate, generating a pulse signal delayed by m/2.sup.K times the unit time, or by 1/2.sup.K times the cycle of the external clock signal. A logic circuit 8 generates an internal clock signal which rises in synchronism with the external clock signal and falls in synchronism with the pulse signal thus delayed. Hence, the internal clock signal has the same cycle as the external clock signal and has a desired duty ratio of (1/2.sup.K).times.100%.
摘要:
In this clock control circuit, clock signal CLK from a receiver is supplied to a pulse generating circuit, and the pulse generating circuit generates forward pulse, which is clock signal CLK delayed as much time as A, and pulse s which is synchronized with dock signal CLK and has a pulse width of A. Consequently, as forward pulse becomes “H” while pulse s is “L” without generating pulse which width is narrower than A, the edge part of forward pulse is securely propagated by a forward-pulse delay line even if it is high frequency. Propagation of forward pulse stops at rising edge of pulse s, and rearward pulse is generated in a corresponding stage. This rearward pulse is propagated by a rearward-pulse delay line, and outputted from an output buffer. As each delay element of forward-pulse delay line and rearward-pulse delay line is configured with one-gate circuits, propagation time of forward pulse and rearward pulse can be adjusted to the time (&tgr;−A) with high accuracy to improve synchronization accuracy.
摘要:
According to an embodiment, a semiconductor memory device comprises: a memory cell array configured having a plurality of memory cell mats, the memory cell mats including a plurality of first lines, second lines, and memory cells, and the memory cell mats being stacked such that the first and second lines are shared alternately by each of the memory cell mats; and a peripheral circuit. Each of the memory cells has a variable resistance characteristic and a current rectifying characteristic. An orientation from an anode toward a cathode of all the memory cells is identical. The peripheral circuit applies to one of the first line and the second line connected to an anode side of the selected memory cell a selected bit line voltage, and applies to the other a selected word line voltage.
摘要:
A semiconductor memory device including a memory cell array including a memory cell layer containing plural memory cells operative to store data in accordance with different resistance states; and an access circuit operative to make access to the memory cells, the memory cell changing the resistance state from a first resistance state to a second resistance state on application of a voltage of a first polarity, and changing the resistance state from the second resistance state to the first resistance state on application of a voltage of a second polarity, the access circuit applying voltages, required for access to the memory cell, to first and second lines connected to a selected memory cell, and bringing at least one of the first and second lines connected to non-selected memory cells into the floating state to make access to the selected memory cell.
摘要:
A resistance change memory device includes: a cell array having multiple layers of mats laminated thereon, each of the mats having word lines and bit lines intersecting each other as well as resistance change type memory cells arranged at intersections thereof, each of the mats further having therein a reference cell and a reference bit line connected to the reference cell, the reference cell set to a state of a certain resistance value; a selection circuit configured to select a word line in each mat of the cell array, and select a bit line intersecting a selected word line and the reference bit line at the same time; and a sense amplifier configured to sense data by comparing respective cell currents of a selected memory cell on the selected bit line and the reference cell on the reference bit line.
摘要:
A resistance change memory device includes: a memory cell array with memory cells arranged therein, the memory cell having a variable resistance element for storing a rewritable resistance value; a reference cell formed of the same memory cells as those set in a high resistance state in the memory cell array, the reference cell being trimmed with selection of the number of parallel-connected memory cells to have a reference current value used for detecting data in the memory cell array; and a sense amplifier configured to compare a cell current value of a memory cell selected in the memory cell array with the reference current value of the reference cell.
摘要:
A resistance-changing memory device has a cell array having memory cells, each of which stores as data a reversibly settable resistance value, a sense amplifier for reading data from a selected memory cell in the cell array, and a voltage generator circuit which generates, after having read data of the selected memory cell, a voltage pulse for convergence of a resistive state of this selected memory cell in accordance with the read data.
摘要:
A memory device has a semiconductor substrate; a plurality of cell arrays stacked above the substrate, each cell array having memory cells, bit lines each commonly connecting one ends of plural cells arranged along a first direction and word lines each commonly connecting the other ends of plural cells arranged along a second direction; a read/write circuit formed on the substrate as underlying the cell arrays; first and second vertical wiring disposed on both sides of each cell array in the first direction to connect the bit lines to the read/write circuit; and third vertical wirings disposed on both sides of each cell array in the second direction to connect the word lines to the read/write circuit.