摘要:
A phase change memory device and a method of manufacture are provided. The phase change memory device includes a phase change layer electrically coupled to a top electrode and a bottom electrode, the phase change layer comprising a phase change material. A mask layer is formed overlying the phase change layer. A first sealing layer is formed overlying the mask layer, and a second sealing layer is formed overlying the first sealing layer.
摘要:
A phase change memory and a method of manufacture are provided. The phase change memory includes a layer of phase change material treated to increase the hydrophobic nature of the phase change material. The hydrophobic nature of the phase change material improves adhesion between the phase change material and an overlying mask layer. The phase change material may be treated, for example, with a plasma comprising N2, NH3, Ar, He, O2, H2, or the like.
摘要:
A semiconductor structure includes a substrate, a first III-V compound layer over the substrate, one or more sets of III-V compound layers over the first III-V compound layer, a second III-V compound layer over the one or more sets of III-V compound layers, and an active layer over the second III-V compound layer. The first III-V compound layer has a first type doping. Each of the one or more sets of III-V compound layers includes a lower III-V compound layer and an upper III-V compound layer over the lower III-V compound layer. The upper III-V compound layer having the first type doping, and the lower III-V compound layer is at least one of undoped, unintentionally doped having a second type doping, or doped having the second type doping. The second III-V compound layer is either undoped or unintentionally doped having the second type doping.
摘要:
A semiconductor device includes a semiconductor substrate having a front surface and a back surface, elements formed on the substrate, interconnect metal layers formed over the front surface of the substrate, including a topmost interconnect metal layer, an inter-metal dielectric for insulating each of the plurality of interconnect metal layers, and a bonding pad disposed within the inter-metal dielectric, the bonding pad in contact with one of the interconnect metal layers other than the topmost interconnect metal layer.
摘要:
Provided is an apparatus. The apparatus includes: a first deposition component that is operable to form a compound over a semiconductor wafer, the compound including at least one of: a III-family element and a V-family element; a second deposition component that is operable to form a passivation layer over the compound; and a transfer component that is operable to move the semiconductor wafer between the first and second deposition components, the transfer component enclosing a space that contains substantially no oxygen and substantially no silicon; wherein the loading component, the first and second deposition components, and the transfer component are all integrated into a single fabrication tool.
摘要:
Split-gate memory cells and fabrication methods thereof. A split-gate memory cell comprises a plurality of isolation regions formed on a semiconductor substrate along a first direction, between two adjacent isolation regions defining an active region having a pair of drains and a source region. A pair of floating gates are disposed on the active regions and self-aligned with the isolation regions, wherein a top level of the floating gate is equal to a top level of the isolation regions. A pair of control gates are self-aligned with the floating gates and disposed on the floating gates along a second direction. A source line is disposed between the pair of control gates along the second direction. A pair of select gates are disposed on the outer sidewalls of the pair of control gates along the second direction.
摘要:
Split-gate memory cells and fabrication methods thereof. A split-gate memory cell comprises a plurality of isolation regions formed on a semiconductor substrate along a first direction, between two adjacent isolation regions defining an active region having a pair of drains and a source region. A top level of the active regions is lower than a top level of the isolation regions. A pair of floating gates is disposed on the active regions and aligned with the isolation regions, wherein a passivation layer is disposed on the floating gate to prevent thinning from CMP. A pair of control gates is self-aligned with the floating gates and disposed on the floating gates along a second direction. A source line is disposed between the pair of control gates along the second direction. A pair of select gates is disposed on the outer sidewalls of the pair of control gates along the second direction.
摘要:
The present disclosure provides a semiconductor structure. The semiconductor structure includes a dielectric material layer on a silicon substrate, the dielectric material layer being patterned to define a plurality of regions separated by the dielectric material layer; a first buffer layer disposed on the silicon substrate; a heterogeneous buffer layer disposed on the first buffer layer; and a gallium nitride layer grown on the heterogeneous buffer layer only within the plurality of regions.
摘要:
The present disclosure provides a semiconductor structure. The semiconductor structure includes a dielectric material layer on a silicon substrate, the dielectric material layer being patterned to define a plurality of regions separated by the dielectric material layer; a first buffer layer disposed on the silicon substrate; a heterogeneous buffer layer disposed on the first buffer layer; and a gallium nitride layer grown on the heterogeneous buffer layer only within the plurality of regions.
摘要:
A method of manufacturing a semiconductor device, wherein a gate structure is formed over a substrate, an interconnect layer is formed over the gate structure and the substrate, and a cap layer is formed over the interconnect layer. The interconnect layer and the cap layer are then planarized to form a substantially planar surface. A mask layer, such as an oxide mask layer, is formed over the planarized portions of the interconnect layer, and the planarized cap layer and portions of the interconnect layer are removed by etching around the mask layer.