摘要:
A projection objective is disclosed. The projection objective can include a plurality of optical elements arranged to image a pattern from an object field in an object surface of the projection objective to an image field in an image surface of the projection objective with electromagnetic operating radiation from a wavelength band around an operating wavelength λ. The plurality of optical elements can include an optical correction plate that includes a body comprising a material transparent to the operating radiation, the body having a first optical surface, a second optical surface, a plate normal substantially perpendicular to the first and second optical surfaces, and a thickness profile defined as a distance between the first and second optical surfaces measured parallel to the plate normal. The first optical surface can have a non-rotationally symmetric aspheric first surface profile with a first peak-to-valley value PV1>λ. The second optical surface can have a non-rotationally symmetric aspheric second surface profile with a second peak-to-valley value PV2>λ. A thickness of the optical correction plate can vary by less than 0.1*(PV1+PV2)/2 across the optical correction plate.
摘要:
A projection objective is disclosed. The projection objective can include a plurality of optical elements arranged to image a pattern from an object field in an object surface of the projection objective to an image field in an image surface of the projection objective with electromagnetic operating radiation from a wavelength band around an operating wavelength λ. The plurality of optical elements can include an optical correction plate that includes a body comprising a material transparent to the operating radiation, the body having a first optical surface, a second optical surface, a plate normal substantially perpendicular to the first and second optical surfaces, and a thickness profile defined as a distance between the first and second optical surfaces measured parallel to the plate normal. The first optical surface can have a non-rotationally symmetric aspheric first surface profile with a first peak-to-valley value PV1>λ. The second optical surface can have a non-rotationally symmetric aspheric second surface profile with a second peak-to-valley value PV2>λ. A thickness of the optical correction plate can vary by less than 0.1*(PV1+PV2)/2 across the optical correction plate.
摘要:
1. Method for patterning a substrate using multiple exposure.2.1. The invention relates to a method for patterning a substrate using exposure processes of an adjustable optical system, a multiple exposure being used for producing a structure image on the substrate.2.2. According to the invention, for at least one of the plurality of exposures, the imaging quality of the optical system is determined by means of a respective measurement step and at least one parameter of the optical system that influences the imaging quality is set depending on this.2.3. Use e.g. for the patterning of semiconductor wafers in microlithography projection exposure apparatuses.
摘要:
The invention relates to a projection exposure system for microlithography, said system comprising an illumination device for generating a projection light, and a projection objective comprising a plurality of optical elements such as lenses (L5) and enabling a reticle that can be arranged in an object plane of the projection objective to be imaged onto a light-sensitive surface (26) that can be arranged in an image plane of the projection objective and is applied to a carrier (30). The inventive system is also provided with an immersion device between an image-side last optical element (L5) of the projection objective and the light-sensitive surface (26), for introducing an immersion liquid (34) into an immersion chamber (50). Said immersion device comprises means (44; 66) which can prevent the appearance of gas bubbles (48) in the immersion liquid (34), affecting the imaging quality, and/or can remove existing gas bubbles (48). Said means can be, for example, an ultrasound source (66) or a degasifier (44).
摘要:
A beam delivery system of a projection exposure system comprises a laser generating a beam of laser light from a plurality of longitudinal laser modes in a cavity, wherein light generated by a single longitudinal laser mode has an average line width λlat, wherein the laser light of the beam has, at each of respective lateral positions of the beam, a second line width λlat corresponding to lateral laser modes, and wherein the laser light of the beam has, when averaged over a whole cross section thereof, a line width λb corresponding to plural lateral laser modes, and wherein λm
摘要:
A beam delivery system of a projection exposure system comprises a laser generating a beam of laser light from a plurality of longitudinal laser modes in a cavity, wherein light generated by a single longitudinal laser mode has an average line width λlat, wherein the laser light of the beam has, at each of respective lateral positions of the beam, a second line width λlat corresponding to lateral laser modes, and wherein the laser light of the beam has, when averaged over a whole cross section thereof, a line width λb corresponding to plural lateral laser modes, and wherein λm
摘要:
A method of optimizing an imaging performance of a projection exposure system is provided, wherein the projection exposure system includes an illumination optical system for illuminating a patterning structure and a projection optical system for imaging a region of the illuminated patterning structure onto a corresponding field. The method involves setting the field to a first exposure field, setting optical parameters of the projection exposure system to a first setting such that the imaging performance within the first exposure field is a first optimum performance, changing the field to a second exposure field, and changing the optical parameters to a second setting such that the imaging performance within the second exposure field is a second optimum performance.
摘要:
An optical system has at least two optical elements whose spatial relation with respect to each other can be changed. At least one of the optical elements comprises a plurality of optical components. The optical system comprises first measuring means for individually measuring an image defect of each optical component, and first computing means for computing first target positions for the plurality of optical components such that an overall image defect of the at least one of the optical elements is below a predetermined threshold value. Second measuring means are provided for measuring an overall image defect of the optical system, and second computing means represent the measured overall image defect as a linear combination of base functions of an orthogonal function set. The second computing means calculate second target position for the at least two optical elements so as to reduce the overall image defect.
摘要:
An optical system has at least two optical elements whose spatial relation with respect to each other can be changed. At least one of the optical elements comprises a plurality of optical components. The optical system comprises first measuring means for individually measuring an image defect of each optical component, and first computing means for computing first target positions for the plurality of optical components such that an overall image defect of the at least one of the optical elements is below a predetermined threshold value. Second measuring means are provided for measuring an overall image defect of the optical system, and second computing means represent the measured overall image defect as a linear combination of base functions of an orthogonal function set. The second computing means calculate second target position for the at least two optical elements so as to reduce the overall image defect.
摘要:
A beam delivery system of a projection exposure system comprises a laser generating a beam of laser light from a plurality of longitudinal laser modes in a cavity, wherein light generated by a single longitudinal laser mode has an average line width λlat, wherein the laser light of the beam has, at each of respective lateral positions of the beam, a second line width λlat corresponding to lateral laser modes, and wherein the laser light of the beam has, when averaged over a whole cross section thereof, a line width λb corresponding to plural lateral laser modes, and wherein λm