Abstract:
A microprocessor includes a plurality of cores, a shared cache memory, and a control unit that individually puts each core to sleep by stopping its clock signal. Each core executes a sleep instruction and responsively makes a respective request of the control unit to put the core to sleep, which the control unit responsively does, and detects when all the cores have made the respective request and responsively wakes up only the last requesting cores. The last core writes back and invalidates the shared cache memory and indicates it has been invalidated and makes a request to the control unit to put the last core back to sleep. The control unit puts the last core back to sleep and continuously keeps the other cores asleep while the last core writes back and invalidates the shared cache memory, indicates the shared cache memory was invalidated, and is put back to sleep.
Abstract:
A microprocessor is provided in which an encrypted program can replace the decryption keys that are used to decrypt sections of the encrypted program. The microprocessor may be decrypting and executing a first section of the encrypted program when it encounters, decrypts, and executes an encrypted store-key instruction to store a new set of decryption keys. After executing the store-key instruction, the microprocessor decrypts and executes a subsequent section of the encrypted program using the new set of decryption keys. On-the-fly key switching may occur numerous times with successive encrypted store-key instructions and successive sets of encrypted instructions.
Abstract:
A microprocessor includes compressed and uncompressed microcode memory storages, having N-bit wide and M-bit wide addressable words, respectively, where N
Abstract:
A microprocessor and method are provided for securely decrypting and executing encrypted instructions within a microprocessor. A plurality of master keys are stored in a secure memory. Encrypted instructions are fetched from an instruction cache. A set of one or more master keys are selected from the secure memory based upon an encrypted instruction fetch address. The selected set of master keys or a decryption key derived therefrom is used to decrypt the encrypted instructions fetched from the instruction cache. The decrypted instructions are then securely executed within the microprocessor. In one implementation, the master keys are intervolved with each other to produce a new decryption key with every fetch quantum. Moreover, a new set of master keys is selected with every new block of instructions.
Abstract:
A secure memory, key expansion logic, and decryption logic are provided for a microprocessor that executes encrypted instructions. The secure memory stores a plurality of decryption key primitives. The key expansion logic selects two or more decryption key primitives from the secure memory and then derives a decryption key from them. The decryption logic uses the decryption key to decrypt an encrypted instruction fetched from the instruction cache. The decryption key primitives are selected on the basis of an encrypted instruction address, one of them is rotated by an amount also determined by the encrypted instruction address, and then they are additively or subtractively accumulated, also on the basis of the encrypted instruction address.
Abstract:
A microprocessor conditionally grants a request to switch from a normal execution mode in which encrypted instructions cannot be executed, into a secure execution mode (SEM). Thereafter, the microprocessor executes a plurality of instructions, including a store-key instruction to write a set of one or more cryptographic key values into a secure memory of the microprocessor. After fetching an encrypted program from an instruction cache, the microprocessor decrypts the encrypted program into plaintext instructions using decryption logic within the microprocessor's instruction-processing pipeline.